BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 28564537)

  • 1. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico study directed towards identification of novel high-affinity inhibitors targeting an oncogenic protein: BRD4-BD1.
    Tumdam R; Kumar A; Subbarao N; Balaji BS
    SAR QSAR Environ Res; 2018 Dec; 29(12):975-996. PubMed ID: 30411639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method.
    Yin J; Henriksen NM; Slochower DR; Gilson MK
    J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors.
    Raj U; Kumar H; Varadwaj PK
    J Biomol Struct Dyn; 2017 Aug; 35(11):2351-2362. PubMed ID: 27494802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Thermodynamics of Host-Guest Systems with SMIRNOFF99Frosst 1.0.5 from the Open Force Field Initiative.
    Slochower DR; Henriksen NM; Wang LP; Chodera JD; Mobley DL; Gilson MK
    J Chem Theory Comput; 2019 Nov; 15(11):6225-6242. PubMed ID: 31603667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of novel ligand targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery: complete pharmacophore approach.
    Shanmugam V; Muthukrishnan S
    J Biomol Struct Dyn; 2023; 41(23):14524-14539. PubMed ID: 36841551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosporone E analogues as BRD4 inhibitors for cancer treatment: molecular docking and molecular dynamic investigations.
    Makki AA; Ibraheem W; Alzain AA
    J Biomol Struct Dyn; 2023; 41(22):12643-12653. PubMed ID: 36644887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations.
    Su J; Liu X; Zhang S; Yan F; Zhang Q; Chen J
    J Biomol Struct Dyn; 2018 Apr; 36(5):1212-1224. PubMed ID: 28466681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation.
    Heinzelmann G; Gilson MK
    Sci Rep; 2021 Jan; 11(1):1116. PubMed ID: 33441879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical Guidance for Consensus Scoring and Force Field Selection in Protein-Ligand Binding Free Energy Simulations.
    Zhang H; Kim S; Im W
    J Chem Inf Model; 2022 Dec; 62(23):6084-6093. PubMed ID: 36399655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of a crystalline water network in docking-based virtual screening: a case study of BRD4.
    Zhong H; Wang Z; Wang X; Liu H; Li D; Liu H; Yao X; Hou T
    Phys Chem Chem Phys; 2019 Dec; 21(45):25276-25289. PubMed ID: 31701109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding mechanism of NHWD-870 to bromodomain-containing protein 4 based on molecular dynamics simulations and free energy calculation.
    Shi M; He J; Weng T; Shi N; Qi W; Guo Y; Chen T; Chen L; Xu D
    Phys Chem Chem Phys; 2022 Feb; 24(8):5125-5137. PubMed ID: 35156677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast, open source implementation of adaptive biasing potentials uncovers a ligand design strategy for the chromatin regulator BRD4.
    Dickson BM; de Waal PW; Ramjan ZH; Xu HE; Rothbart SB
    J Chem Phys; 2016 Oct; 145(15):154113. PubMed ID: 27782467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations.
    Chéron N; Shakhnovich EI
    J Comput Chem; 2017 Aug; 38(22):1941-1951. PubMed ID: 28568844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.