These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28565166)

  • 1. GENETIC VARIATION FOR PHENOTYPIC PLASTICITY IN THE LARVAL LIFE HISTORY OF SPADEFOOT TOADS (SCAPHIOPUS COUCHII).
    Newman RA
    Evolution; 1994 Dec; 48(6):1773-1785. PubMed ID: 28565166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level.
    Newman RA
    Oecologia; 1998 Jun; 115(1-2):9-16. PubMed ID: 28308472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAPTIVE PLASTICITY IN DEVELOPMENT OF SCAPHIOPUS COUCHII TADPOLES IN DESERT PONDS.
    Newman RA
    Evolution; 1988 Jul; 42(4):774-783. PubMed ID: 28563867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADAPTIVE GENETIC VARIATION IN GROWTH AND DEVELOPMENT OF TADPOLES OF THE HYBRIDOGENETIC RANA ESCULENTA COMPLEX.
    Semlitsch RD
    Evolution; 1993 Dec; 47(6):1805-1818. PubMed ID: 28568004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GENETIC VARIATION FOR LARVAL ANURAN (SCAPHIOPUS COUCHII) DEVELOPMENT TIME IN AN UNCERTAIN ENVIRONMENT.
    Newman RA
    Evolution; 1988 Jul; 42(4):763-773. PubMed ID: 28563872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations.
    Laurila A; Karttunen S; Merilä J
    Evolution; 2002 Mar; 56(3):617-27. PubMed ID: 11989690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADAPTIVE PHENOTYPIC PLASTICITY IN GROWTH, DEVELOPMENT, AND BODY SIZE IN THE YELLOW DUNG FLY.
    Blanckenhorn WU
    Evolution; 1998 Oct; 52(5):1394-1407. PubMed ID: 28565396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity.
    Gomez-Mestre I; Buchholz DR
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19021-6. PubMed ID: 17135355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species.
    Kulkarni SS; Denver RJ; Gomez-Mestre I; Buchholz DR
    Nat Commun; 2017 Oct; 8(1):993. PubMed ID: 29051478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.
    Bashey F
    Evolution; 2006 Feb; 60(2):348-61. PubMed ID: 16610325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection on herbivore life-history traits by the first and third trophic levels: the devil and the deep blue sea revisited.
    Lill JT
    Evolution; 2001 Nov; 55(11):2236-47. PubMed ID: 11794783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of changes in resource level on age and size at metamorphosis in Hyla squirella.
    Beck CW
    Oecologia; 1997 Oct; 112(2):187-192. PubMed ID: 28307569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate.
    Giménez L
    Ecology; 2010 May; 91(5):1401-13. PubMed ID: 20503872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions.
    Laugen AT; Kruuk LE; Laurila A; Räsänen K; Stone J; Merilä J
    Genet Res; 2005 Dec; 86(3):161-70. PubMed ID: 16454857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interacting effects of predation risk and food availability on larval anuran behaviour and development.
    Nicieza AG
    Oecologia; 2000 Jun; 123(4):497-505. PubMed ID: 28308758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient.
    Nilsson-Örtman V; Rogell B; Stoks R; Johansson F
    Heredity (Edinb); 2015 Oct; 115(4):366-78. PubMed ID: 25649500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From metamorphosis to maturity in complex life cycles: equal performance of different juvenile life history pathways.
    Schmidt BR; Hödl W; Schaub M
    Ecology; 2012 Mar; 93(3):657-67. PubMed ID: 22624219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.
    Kirschman LJ; McCue MD; Boyles JG; Warne RW
    J Exp Biol; 2017 Sep; 220(Pt 18):3391-3397. PubMed ID: 28729344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.
    Ergon T; Ergon R
    J Evol Biol; 2017 Mar; 30(3):486-500. PubMed ID: 27862551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.