These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28565271)

  • 21. THE GENETICS OF VIABILITY IN DROSOPHILA MELANOGASTER: EFFECTS OF INBREEDING AND ARTIFICIAL SELECTION.
    García N; López-Fanjul C; García-Dorado A
    Evolution; 1994 Aug; 48(4):1277-1285. PubMed ID: 28564480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of rate of inbreeding on inbreeding depression in Drosophila melanogaster.
    Ehiobu NG; Goddard ME; Taylor JF
    Theor Appl Genet; 1989 Jan; 77(1):123-7. PubMed ID: 24232484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selected for wind tunnel flight: rethinking fitness surfaces.
    Weber KE
    Genetics; 1996 Sep; 144(1):205-13. PubMed ID: 8878686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.
    Norry FM; Scannapieco AC; Sambucetti P; Bertoli CI; Loeschcke V
    Mol Ecol; 2008 Oct; 17(20):4570-81. PubMed ID: 18986501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ; Bale JS
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY.
    Cavicchi S; Guerra D; Torre V; Huey RB
    Evolution; 1995 Aug; 49(4):676-684. PubMed ID: 28565130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The variance in inbreeding depression and the recovery of fitness in bottlenecked populations.
    Fowler K; Whitlock MC
    Proc Biol Sci; 1999 Oct; 266(1433):2061-6. PubMed ID: 10902542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors.
    Sørensen JG; Nielsen MM; Loeschcke V
    J Evol Biol; 2007 Jul; 20(4):1624-36. PubMed ID: 17584255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection for cold resistance alters gene transcript levels in Drosophila melanogaster.
    Telonis-Scott M; Hallas R; McKechnie SW; Wee CW; Hoffmann AA
    J Insect Physiol; 2009 Jun; 55(6):549-55. PubMed ID: 19232407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster.
    Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M
    J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MULTIPLE GENETIC MECHANISMS FOR THE EVOLUTION OF SENESCENCE IN DROSOPHILA MELANOGASTER.
    Service PM; Hutchinson EW; Rose MR
    Evolution; 1988 Jul; 42(4):708-716. PubMed ID: 28563863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response to selection on cold tolerance is constrained by inbreeding.
    Dierks A; Baumann B; Fischer K
    Evolution; 2012 Aug; 66(8):2384-98. PubMed ID: 22834739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation in D. bipectinata and the invasive species D. malerkotliana.
    Parkash R; Singh D; Lambhod C
    J Exp Biol; 2014 Mar; 217(Pt 6):924-34. PubMed ID: 24265421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in fecundity of Drosophila melanogaster and D. simulans in response to selection for competitive ability.
    Aiken RB; Gibo DL
    Oecologia; 1979 Oct; 43(1):63-77. PubMed ID: 28309828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RESPONSES AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON THORAX LENGTH IN DROSOPHILA MELANOGASTER.
    Partridge L; Fowler K
    Evolution; 1993 Feb; 47(1):213-226. PubMed ID: 28568094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THE RESPONSE TO SELECTION FOR FAST LARVAL DEVELOPMENT IN DROSOPHILA MELANOGASTER AND ITS EFFECT ON ADULT WEIGHT: AN EXAMPLE OF A FITNESS TRADE-OFF.
    Nunney L
    Evolution; 1996 Jun; 50(3):1193-1204. PubMed ID: 28565282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations.
    Schiffer M; Hangartner S; Hoffmann AA
    J Exp Biol; 2013 Oct; 216(Pt 20):3790-8. PubMed ID: 23821714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. COMPLEX TRADE-OFFS AND THE EVOLUTION OF STARVATION RESISTANCE IN DROSOPHILA MELANOGASTER.
    Chippindale AK; Chu TJF; Rose MR
    Evolution; 1996 Apr; 50(2):753-766. PubMed ID: 28568920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.