These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28565273)

  • 21. Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster.
    Gilchrist GW; Huey RB
    Evolution; 2001 Jan; 55(1):209-14. PubMed ID: 11263742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster.
    Valtonen TM; Kangassalo K; Pölkki M; Rantala MJ
    PLoS One; 2012; 7(2):e31611. PubMed ID: 22359607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental temperature affects thermal dependence of locomotor activity in Drosophila.
    Klepsatel P; Gáliková M
    J Therm Biol; 2022 Jan; 103():103153. PubMed ID: 35027204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster.
    Huisamen EJ; Colinet H; Karsten M; Terblanche JS
    J Insect Physiol; 2022 Jul; 140():104403. PubMed ID: 35667397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. THERMAL EVOLUTION OF EGG SIZE IN DROSOPHILA MELANOGASTER.
    Azevedo RBR; French V; Partridge L
    Evolution; 1996 Dec; 50(6):2338-2345. PubMed ID: 28565673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flies developed small bodies and small cells in warm and in thermally fluctuating environments.
    Czarnoleski M; Cooper BS; Kierat J; Angilletta MJ
    J Exp Biol; 2013 Aug; 216(Pt 15):2896-901. PubMed ID: 23619414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-generational effects of temperature on flight performance, and associated life-history traits in an insect.
    Ferrer A; Dorn S; Mazzi D
    J Evol Biol; 2013 Nov; 26(11):2321-30. PubMed ID: 23981249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard.
    Warner DA; Shine R
    Evolution; 2005 Oct; 59(10):2209-21. PubMed ID: 16405164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flies evolved small bodies and cells at high or fluctuating temperatures.
    Adrian GJ; Czarnoleski M; Angilletta MJ
    Ecol Evol; 2016 Nov; 6(22):7991-7996. PubMed ID: 27878071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing thermal performance curves across traits: how consistent are they?
    Kellermann V; Chown SL; Schou MF; Aitkenhead I; Janion-Scheepers C; Clemson A; Scott MT; Sgrò CM
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae).
    Du WG; Ji X
    J Exp Zool A Comp Exp Biol; 2006 Jan; 305(1):47-54. PubMed ID: 16358269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae).
    Kjærsgaard A; Pertoldi C; Loeschcke V; Blanckenhorn WU
    Environ Entomol; 2013 Oct; 42(5):1069-78. PubMed ID: 24331617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Life history consequences of temperature transients in Drosophila melanogaster.
    Dillon ME; Cahn LR; Huey RB
    J Exp Biol; 2007 Aug; 210(Pt 16):2897-904. PubMed ID: 17690238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of body size and developmental time of Tribolium castaneum to constant versus fluctuating thermal conditions.
    Małek D; Drobniak S; Gozdek A; Pawlik K; Kramarz P
    J Therm Biol; 2015 Jul; 51():110-8. PubMed ID: 25965024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAPID LABORATORY EVOLUTION OF ADULT LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER IN RESPONSE TO TEMPERATURE.
    Partridge L; Barrie B; Barton NH; Fowler K; French V
    Evolution; 1995 Jun; 49(3):538-544. PubMed ID: 28565092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variations in morphological and life-history traits under extreme temperatures in Drosophila ananassae.
    Sisodia S; Singh BN
    J Biosci; 2009 Jun; 34(2):263-74. PubMed ID: 19550042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density.
    Bitner-Mathé BC; Klaczko LB
    Genetica; 1999; 105(2):203-10. PubMed ID: 10568261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster.
    Norry FM; Loeschcke V
    Evolution; 2002 Feb; 56(2):299-306. PubMed ID: 11926498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L; Hoffmann AA
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex response in size-related traits of bulb mites (Rhizoglyphus robini) under elevated thermal conditions - an experimental evolution approach.
    Plesnar-Bielak A; Jawor A; Kramarz PE
    J Exp Biol; 2013 Dec; 216(Pt 24):4542-8. PubMed ID: 24031061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.