These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28565273)

  • 41. Temperature and developmental responses of body and cell size in Drosophila; effects of polyploidy and genome configuration.
    Jalal M; Andersen T; Hessen DO
    J Therm Biol; 2015 Jul; 51():1-14. PubMed ID: 25965012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.
    Dayananda B; Ibargüengoytía N; Whiting MJ; Webb JK
    J Therm Biol; 2017 Apr; 65():64-68. PubMed ID: 28343577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parental effects on embryonic viability and growth in Arctic charr Salvelinus alpinus at two incubation temperatures.
    Janhunen M; Piironen J; Peuhkuri N
    J Fish Biol; 2010 Jun; 76(10):2558-70. PubMed ID: 20557608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal plasticity due to parental and early-life environments in the jacky dragon (Amphibolurus muricatus).
    So CKJ; Schwanz LE
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; 329(6-7):308-316. PubMed ID: 29938929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenotypic plasticity for life-history traits in Drosophila melanogaster. III. Effect of the environment on genetic parameters.
    Gebhardt MD; Stearns SC
    Genet Res; 1992 Oct; 60(2):87-101. PubMed ID: 1468647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster.
    Huey RB; Wakefield T; Crill WD; Gilchrist GW
    Heredity (Edinb); 1995 Feb; 74 ( Pt 2)():216-23. PubMed ID: 7706111
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.
    Xu W; Dang W; Geng J; Lu HL
    J Therm Biol; 2015 Oct; 53():119-24. PubMed ID: 26590464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developmental time, body size and wing loading in Drosophila buzzatii from lowland and highland populations in Argentina.
    Norry FM; Bubliy OA; Loeschcke V
    Hereditas; 2001; 135(1):35-40. PubMed ID: 12035612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny.
    Gibert P; Huey RB
    Physiol Biochem Zool; 2001; 74(3):429-34. PubMed ID: 11331516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The metabolic, locomotor and sex-dependent effects of elevated temperature on Trinidadian guppies: limited capacity for acclimation.
    Muñoz NJ; Breckels RD; Neff BD
    J Exp Biol; 2012 Oct; 215(Pt 19):3436-41. PubMed ID: 22693028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity.
    Kennington WJ; Killeen JR; Goldstein DB; Partridge L
    Evolution; 2003 Apr; 57(4):932-6. PubMed ID: 12778562
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches.
    Manenti T; Kjærsgaard A; Schou TM; Pertoldi C; Moghadam NN; Loeschcke V
    Insects; 2021 Oct; 12(10):. PubMed ID: 34680694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.
    Frazier MR; Woods HA; Harrison JF
    Physiol Biochem Zool; 2001; 74(5):641-50. PubMed ID: 11517449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flies developed smaller cells when temperature fluctuated more frequently.
    Czarnoleski M; Dragosz-Kluska D; Angilletta MJ
    J Therm Biol; 2015 Dec; 54():106-10. PubMed ID: 26615732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal evolution of growth efficiency in Drosophila melanogaster.
    Neat F; Fowler K; French V; Partridge L
    Proc Biol Sci; 1995 Apr; 260(1357):73-8. PubMed ID: 7761485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria.
    Blanckenhorn WU; Gautier R; Nick M; Puniamoorthy N; Schäfer MA
    J Therm Biol; 2014 Dec; 46():1-9. PubMed ID: 25455934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. THE EVOLUTION OF MATERNAL INVESTMENT IN LIZARDS: AN EXPERIMENTAL AND COMPARATIVE ANALYSIS OF EGG SIZE AND ITS EFFECTS ON OFFSPRING PERFORMANCE.
    Sinervo B
    Evolution; 1990 Mar; 44(2):279-294. PubMed ID: 28564384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature.
    Debat V; Debelle A; Dworkin I
    Evolution; 2009 Nov; 63(11):2864-76. PubMed ID: 19624729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.