These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 28565406)
1. EVOLUTIONARY ADAPTATION TO TEMPERATURE. VII. EXTENSION OF THE UPPER THERMAL LIMIT OF ESCHERICHIA COLI. Mongold JA; Bennett AF; Lenski RE Evolution; 1999 Apr; 53(2):386-394. PubMed ID: 28565406 [TBL] [Abstract][Full Text] [Related]
2. EVOLUTIONARY ADAPTATION TO TEMPERATURE. IV. ADAPTATION OF ESCHERICHIA COLI AT A NICHE BOUNDARY. Mongold JA; Bennett AF; Lenski RE Evolution; 1996 Feb; 50(1):35-43. PubMed ID: 28568880 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary response of escherichia coli to thermal stress. Lenski RE; Bennett AF Am Nat; 1993 Jul; 142 Suppl 1():S47-64. PubMed ID: 19425951 [TBL] [Abstract][Full Text] [Related]
4. EVOLUTIONARY ADAPTATION TO TEMPERATURE II. THERMAL NICHES OF EXPERIMENTAL LINES OF ESCHERICHIA COLI. Bennett AF; Lenski RE Evolution; 1993 Feb; 47(1):1-12. PubMed ID: 28568084 [TBL] [Abstract][Full Text] [Related]
5. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. Caspeta L; Nielsen J mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325 [TBL] [Abstract][Full Text] [Related]
6. EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT. Bennett AF; Lenski RE; Mittler JE Evolution; 1992 Feb; 46(1):16-30. PubMed ID: 28564952 [TBL] [Abstract][Full Text] [Related]
7. EVOLUTIONARY ADAPTATION TO TEMPERATURE. VI. PHENOTYPIC ACCLIMATION AND ITS EVOLUTION IN ESCHERICHIA COLI. Bennett AF; Lenski RE Evolution; 1997 Feb; 51(1):36-44. PubMed ID: 28568801 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic and evolutionary adaptation of a model bacterial system to stressful thermal environments. Bennett AF; Lenski RE EXS; 1997; 83():135-54. PubMed ID: 9342847 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments. Bronikowski AM; Bennett AF; Lenski RE Evolution; 2001 Jan; 55(1):33-40. PubMed ID: 11263744 [TBL] [Abstract][Full Text] [Related]
10. A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. Toll-Riera M; Olombrada M; Castro-Giner F; Wagner A Sci Adv; 2022 Jul; 8(28):eabk3511. PubMed ID: 35857489 [TBL] [Abstract][Full Text] [Related]
11. EVOLUTIONARY ADAPTATION TO TEMPERATURE. III. ADAPTATION OF ESCHERICHIA COLI TO A TEMPORALLY VARYING ENVIRONMENT. Leroi AM; Lenski RE; Bennett AF Evolution; 1994 Aug; 48(4):1222-1229. PubMed ID: 28564463 [TBL] [Abstract][Full Text] [Related]
12. Different tradeoffs result from alternate genetic adaptations to a common environment. Rodríguez-Verdugo A; Carrillo-Cisneros D; González-González A; Gaut BS; Bennett AF Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12121-6. PubMed ID: 25092325 [TBL] [Abstract][Full Text] [Related]
13. Linking temperature dependence of fitness effects of mutations to thermal niche adaptation. Chen N; Zhang QG J Evol Biol; 2023 Oct; 36(10):1517-1524. PubMed ID: 37750539 [TBL] [Abstract][Full Text] [Related]
14. Specificity of genome evolution in experimental populations of Deatherage DE; Kepner JL; Bennett AF; Lenski RE; Barrick JE Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1904-E1912. PubMed ID: 28202733 [TBL] [Abstract][Full Text] [Related]
15. EVOLUTIONARY ADAPTATION TO TEMPERATURE. V. ADAPTIVE MECHANISMS AND CORRELATED RESPONSES IN EXPERIMENTAL LINES OF ESCHERICHIA COLI. Bennett AF; Lenski RE Evolution; 1996 Apr; 50(2):493-503. PubMed ID: 28568929 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms. Killeen J; Gougat-Barbera C; Krenek S; Kaltz O Mol Ecol; 2017 Apr; 26(7):1734-1746. PubMed ID: 28222239 [TBL] [Abstract][Full Text] [Related]
17. Thermal niche adaptations of common mudskipper (Periophthalmus kalolo) and barred mudskipper (Periophthalmus argentilineatus) in air and water. Dabruzzi TF; Fangue NA; Kadir NN; Bennett WA J Therm Biol; 2019 Apr; 81():170-177. PubMed ID: 30975415 [TBL] [Abstract][Full Text] [Related]
18. Indirect selection of thermal tolerance during experimental evolution of Drosophila melanogaster. Condon C; Acharya A; Adrian GJ; Hurliman AM; Malekooti D; Nguyen P; Zelic MH; Angilletta MJ Ecol Evol; 2015 May; 5(9):1873-80. PubMed ID: 26140203 [TBL] [Abstract][Full Text] [Related]
19. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Soemphol W; Deeraksa A; Matsutani M; Yakushi T; Toyama H; Adachi O; Yamada M; Matsushita K Biosci Biotechnol Biochem; 2011; 75(10):1921-8. PubMed ID: 21979075 [TBL] [Abstract][Full Text] [Related]
20. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ. Kashiwagi A; Kadoya T; Kumasaka N; Kumagai T; Tsushima FS; Yomo T Arch Virol; 2018 Oct; 163(10):2655-2662. PubMed ID: 29869034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]