These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28565417)

  • 1. RELATIONSHIP BETWEEN SELF-FERTILITY, ALLOCATION OF GROWTH, AND INBREEDING DEPRESSION IN THREE CONIFEROUS SPECIES.
    Sorensen FC
    Evolution; 1999 Apr; 53(2):417-425. PubMed ID: 28565417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.
    Stout DH; Sala A
    Tree Physiol; 2003 Jan; 23(1):43-50. PubMed ID: 12511303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.
    Barroetaveña C; Cázares E; Rajchenberg M
    Mycorrhiza; 2007 Jul; 17(5):355-373. PubMed ID: 17345105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic compensation in northern Rocky Mountain conifers: does successional position and life history matter?
    Sala A
    Oecologia; 2006 Aug; 149(1):1-11. PubMed ID: 16639568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Family differences in height growth and photosynthetic traits in three conifers.
    Marshall JD; Rehfeldt GE; Monserud RA
    Tree Physiol; 2001 Jul; 21(11):727-34. PubMed ID: 11470658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.
    Wang T; Aitken SN; Woods JH; Polsson K; Magnussen S
    Theor Appl Genet; 2004 Apr; 108(6):1162-71. PubMed ID: 15067403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate.
    Morino K; Minor RL; Barron-Gafford GA; Brown PM; Hughes MK
    Tree Physiol; 2021 Oct; 41(10):1893-1905. PubMed ID: 33823053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Foliar Blight of Douglas-fir, Grand Fir, and Noble Fir Caused by a Binucleate Rhizoctonia-like Fungus.
    Putnam ML
    Plant Dis; 1999 Feb; 83(2):200. PubMed ID: 30849815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana).
    Gupta PK; Durzan DJ
    Plant Cell Rep; 1985 Aug; 4(4):177-9. PubMed ID: 24253875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.
    Bond BJ; Farnsworth BT; Coulombe RA; Winner WE
    Oecologia; 1999 Aug; 120(2):183-192. PubMed ID: 28308078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance.
    Barnard DM; Meinzer FC; Lachenbruch B; McCulloh KA; Johnson DM; Woodruff DR
    Plant Cell Environ; 2011 Apr; 34(4):643-54. PubMed ID: 21309793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources.
    Hawkins BJ; Boukcim H; Plassard C
    Plant Cell Environ; 2008 Mar; 31(3):278-87. PubMed ID: 18034773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition.
    Hawkins BJ; Henry G; Kiiskila SB
    Tree Physiol; 1998 Dec; 18(12):803-810. PubMed ID: 12651401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Report of the Armillaria Root Disease Pathogen, Armillaria gallica, on Douglas-fir (Pseudotsuga menziesii) in Arizona.
    Nelson EV; Fairweather ML; Ashiglar SM; Hanna JW; Klopfenstein NB
    Plant Dis; 2013 Dec; 97(12):1658. PubMed ID: 30716834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.
    Song YY; Simard SW; Carroll A; Mohn WW; Zeng RS
    Sci Rep; 2015 Feb; 5():8495. PubMed ID: 25683155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased needle longevity of fertilized Douglas-fir and grand fir in the northern Rockies.
    Balster NJ; Marshall JD
    Tree Physiol; 2000 Nov; 20(17):1191-1197. PubMed ID: 12651495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.