These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 28565446)
1. BIOCHEMICAL EVOLUTION ASSOCIATED WITH ANTIPREDATOR ADAPTATION IN DAMSELFLIES. McPeek MA Evolution; 1999 Dec; 53(6):1835-1845. PubMed ID: 28565446 [TBL] [Abstract][Full Text] [Related]
2. MORPHOLOGICAL EVOLUTION MEDIATED BY BEHAVIOR IN THE DAMSELFLIES OF TWO COMMUNITIES. McPeek MA Evolution; 1995 Aug; 49(4):749-769. PubMed ID: 28565148 [TBL] [Abstract][Full Text] [Related]
3. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts. Siepielski AM; Beaulieu JM Evolution; 2017 Apr; 71(4):974-984. PubMed ID: 28094439 [TBL] [Abstract][Full Text] [Related]
4. Predisposed to adapt? Clade-level differences in characters affecting swimming performance in damselflies. McPeek MA Evolution; 2000 Dec; 54(6):2072-80. PubMed ID: 11209783 [TBL] [Abstract][Full Text] [Related]
5. Evolution of prey behavior in response to changes in predation regime: damselflies in fish and dragonfly lakes. Stoks R; McPeek MA; Mitchell JL Evolution; 2003 Mar; 57(3):574-85. PubMed ID: 12703947 [TBL] [Abstract][Full Text] [Related]
6. MEASURING PHENOTYPIC SELECTION ON AN ADAPTATION: LAMELLAE OF DAMSELFLIES EXPERIENCING DRAGONFLY PREDATION. McPeek MA Evolution; 1997 Apr; 51(2):459-466. PubMed ID: 28565368 [TBL] [Abstract][Full Text] [Related]
7. A tale of two diversifications: reciprocal habitat shifts to fill ecological space along the pond permanence gradient. Stoks R; McPeek MA Am Nat; 2006 Dec; 168 Suppl 6():S50-72. PubMed ID: 17109329 [TBL] [Abstract][Full Text] [Related]
8. Predator-driven trait diversification in a dragonfly genus: covariation in behavioral and morphological antipredator defense. Mikolajewski DJ; De Block M; Rolff J; Johansson F; Beckerman AP; Stoks R Evolution; 2010 Nov; 64(11):3327-25. PubMed ID: 20624175 [TBL] [Abstract][Full Text] [Related]
9. Changing the habitat: the evolution of intercorrelated traits to escape from predators. Mikolajewski DJ; Scharnweber K; Jiang B; Leicht S; Mauersberger R; Johansson F J Evol Biol; 2016 Jul; 29(7):1394-405. PubMed ID: 27062155 [TBL] [Abstract][Full Text] [Related]
10. Parallel evolution in ecological and reproductive traits to produce cryptic damselfly species across the holarctic. Stoks R; Nystrom JL; May ML; McPeek MA Evolution; 2005 Sep; 59(9):1976-88. PubMed ID: 16261735 [TBL] [Abstract][Full Text] [Related]
11. Relaxed predation results in reduced phenotypic integration in a suite of dragonflies. Mikolajewski DJ; Rüsen L; Mauersberger R; Johansson F; Rolff J J Evol Biol; 2015 Jul; 28(7):1354-63. PubMed ID: 26009809 [TBL] [Abstract][Full Text] [Related]
13. Invertebrate predation selects for the loss of a morphological antipredator trait. Mikolajewski DJ; Johansson F; Wohlfahrt B; Stoks R Evolution; 2006 Jun; 60(6):1306-10. PubMed ID: 16892980 [TBL] [Abstract][Full Text] [Related]
14. Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering. Prum RO; Cole JA; Torres RH J Exp Biol; 2004 Oct; 207(Pt 22):3999-4009. PubMed ID: 15472030 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. Kohli M; Letsch H; Greve C; Béthoux O; Deregnaucourt I; Liu S; Zhou X; Donath A; Mayer C; Podsiadlowski L; Gunkel S; Machida R; Niehuis O; Rust J; Wappler T; Yu X; Misof B; Ware J iScience; 2021 Nov; 24(11):103324. PubMed ID: 34805787 [TBL] [Abstract][Full Text] [Related]
16. Nonconsumptive predator-driven mortality causes natural selection on prey. Siepielski AM; Wang J; Prince G Evolution; 2014 Mar; 68(3):696-704. PubMed ID: 24152082 [TBL] [Abstract][Full Text] [Related]
17. Conflict between antipredator and antiparasite behaviour in larval damselflies. Baker RL; Smith BP Oecologia; 1997 Feb; 109(4):622-628. PubMed ID: 28307348 [TBL] [Abstract][Full Text] [Related]
18. The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L.: D-lactate formation during environmental anaerobiosis versus octopine formation during exercise. Meinardus-Hager G; Gäde G Exp Biol; 1986; 45(2):91-110. PubMed ID: 2422053 [TBL] [Abstract][Full Text] [Related]
19. The growth/predation risk trade-off: so what is the mechanism? McPeek MA Am Nat; 2004 May; 163(5):E88-111. PubMed ID: 15122497 [TBL] [Abstract][Full Text] [Related]
20. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. McCollum SA; Leimberger JD Oecologia; 1997 Feb; 109(4):615-621. PubMed ID: 28307347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]