These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28565456)

  • 1. THE EFFECT OF NUCLEAR AND CYTOPLASMIC GENES ON FITNESS AND LOCAL ADAPTATION IN AN ANNUAL LEGUME, CHAMAECRISTA FASCICULATA.
    Galloway LF; Fenster CB
    Evolution; 1999 Dec; 53(6):1734-1743. PubMed ID: 28565456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear and cytoplasmic contributions to intraspecific divergence in an annual legume.
    Galloway LF; Fenster CB
    Evolution; 2001 Mar; 55(3):488-97. PubMed ID: 11327157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population differentiation in an annual legume: local adaptation.
    Galloway LF; Fenster CB
    Evolution; 2000 Aug; 54(4):1173-81. PubMed ID: 11005286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata.
    Erickson DL; Fenster CB
    Evolution; 2006 Feb; 60(2):225-33. PubMed ID: 16610315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae).
    Abdala-Roberts L; Marquis RJ
    Oecologia; 2007 Nov; 154(2):315-26. PubMed ID: 17704951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.
    Roux F; Mary-Huard T; Barillot E; Wenes E; Botran L; Durand S; Villoutreix R; Martin-Magniette ML; Camilleri C; Budar F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3687-92. PubMed ID: 26979961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.
    Leinonen PH; Remington DL; Leppälä J; Savolainen O
    Mol Ecol; 2013 Feb; 22(3):709-23. PubMed ID: 22724431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of climate and competitors in limiting fitness across range edges of an annual plant.
    Stanton-Geddes J; Tiffin P; Shaw RG
    Ecology; 2012 Jul; 93(7):1604-13. PubMed ID: 22919907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1459-71. PubMed ID: 15341149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1446-58. PubMed ID: 15341148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata.
    Leinonen PH; Remington DL; Savolainen O
    Evolution; 2011 Jan; 65(1):90-107. PubMed ID: 20812972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological and genetic factors contributing to the low frequency of male sterility in Chamaecrista Fasciculata (Fabaceae).
    Williams HL; Fenster CB
    Am J Bot; 1998 Sep; 85(9):1243-50. PubMed ID: 21685010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population differentiation in an annual legume: genetic architecture.
    Fenster CB; Galloway LF
    Evolution; 2000 Aug; 54(4):1157-72. PubMed ID: 11005285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant.
    Kulbaba MW; Sheth SN; Pain RE; Eckhart VM; Shaw RG
    Evolution; 2019 Sep; 73(9):1746-1758. PubMed ID: 31432512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of additive genetic variance for fitness in a population of partridge pea in two field sites.
    Sheth SN; Kulbaba MW; Pain RE; Shaw RG
    Evolution; 2018 Nov; 72(11):2537-2545. PubMed ID: 30267420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the Predicted versus Realized Rate of Adaptation of
    Peschel AR; Shaw RG
    Am Nat; 2024 Jan; 203(1):14-27. PubMed ID: 38207135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytonuclear interactions can favor the evolution of genomic imprinting.
    Wolf JB
    Evolution; 2009 May; 63(5):1364-71. PubMed ID: 19425202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the capacity of Chamaecrista fasciculata for adaptation to change in precipitation.
    Peschel AR; Boehm EL; Shaw RG
    Evolution; 2021 Jan; 75(1):73-85. PubMed ID: 33215695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GENE FLOW IN CHAMAECRISTA FASCICULATA (LEGUMINOSAE) II. GENE ESTABLISHMENT.
    Fenster CB
    Evolution; 1991 Mar; 45(2):410-422. PubMed ID: 28567871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifetime Fitness through Female and Male Function: Influences of Genetically Effective Population Size and Density.
    Kulbaba MW; Shaw RG
    Am Nat; 2021 Apr; 197(4):434-447. PubMed ID: 33755534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.