These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28565476)

  • 1. AN INTERACTION BETWEEN ENVIRONMENTAL TEMPERATURE AND GENETIC VARIATION FOR BODY SIZE FOR THE FITNESS OF ADULT FEMALE DROSOPHILA MELANOGASTER.
    McCabe J; Partridge L
    Evolution; 1997 Aug; 51(4):1164-1174. PubMed ID: 28565476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAPID LABORATORY EVOLUTION OF ADULT LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER IN RESPONSE TO TEMPERATURE.
    Partridge L; Barrie B; Barton NH; Fowler K; French V
    Evolution; 1995 Jun; 49(3):538-544. PubMed ID: 28565092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and clinal variation in larval growth efficiency in Drosophila melanogaster.
    Robinson SJW; Partridge L
    J Evol Biol; 2001 Jan; 14(1):14-21. PubMed ID: 29280588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WITHIN- AND BETWEEN-GENERATION EFFECTS OF TEMPERATURE ON THE MORPHOLOGY AND PHYSIOLOGY OF DROSOPHILA MELANOGASTER.
    Crill WD; Huey RB; Gilchrist GW
    Evolution; 1996 Jun; 50(3):1205-1218. PubMed ID: 28565273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THERMAL EVOLUTION OF EGG SIZE IN DROSOPHILA MELANOGASTER.
    Azevedo RBR; French V; Partridge L
    Evolution; 1996 Dec; 50(6):2338-2345. PubMed ID: 28565673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis.
    Carroll AL; Quiring DT
    Oecologia; 1993 Mar; 93(2):233-241. PubMed ID: 28313612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LATITUDINAL VARIATION OF WING:THORAX SIZE RATIO AND WING-ASPECT RATIO IN DROSOPHILA MELANOGASTER.
    Azevedo RBR; James AC; McCabe J; Partridge L
    Evolution; 1998 Oct; 52(5):1353-1362. PubMed ID: 28565379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of developmental temperature on the genetic architecture underlying size and thermal clines in Drosophila melanogaster and D. simulans from the east coast of Australia.
    van Heerwaarden B; Sgrò CM
    Evolution; 2011 Apr; 65(4):1048-67. PubMed ID: 21091469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster.
    Norry FM; Loeschcke V
    Evolution; 2002 Feb; 56(2):299-306. PubMed ID: 11926498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal evolution of growth efficiency in Drosophila melanogaster.
    Neat F; Fowler K; French V; Partridge L
    Proc Biol Sci; 1995 Apr; 260(1357):73-8. PubMed ID: 7761485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura.
    Santos M; Brites D; Laayouni H
    J Evol Biol; 2006 Nov; 19(6):2006-21. PubMed ID: 17040398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RESPONSES AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON THORAX LENGTH IN DROSOPHILA MELANOGASTER.
    Partridge L; Fowler K
    Evolution; 1993 Feb; 47(1):213-226. PubMed ID: 28568094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HERITABLE VARIATION FOR FECUNDITY IN FIELD-COLLECTED DROSOPHILA MELANOGASTER AND THEIR OFFSPRING REARED UNDER DIFFERENT ENVIRONMENTAL TEMPERATURES.
    Sgrò CM; Hoffmann AA
    Evolution; 1998 Feb; 52(1):134-143. PubMed ID: 28568166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions.
    Hoffmann AA; Ratna E; Sgrò CM; Barton M; Blacket M; Hallas R; De Garis S; Weeks AR
    J Evol Biol; 2007 Nov; 20(6):2219-27. PubMed ID: 17887974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal adaptation in Drosophila serrata under conditions linked to its southern border: unexpected patterns from laboratory selection suggest limited evolutionary potential.
    Magiafoglou A; Hoffmann A
    J Genet; 2003 Dec; 82(3):179-89. PubMed ID: 15133194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polygenic mutation in Drosophila melanogaster: genotype x environment interaction for spontaneous mutations affecting bristle number.
    Mackay TF; Lyman RF
    Genetica; 1998; 102-103(1-6):199-215. PubMed ID: 9720280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE CONTRIBUTION OF NEW MUTATIONS TO GENOTYPE-ENVIRONMENT INTERACTION FOR FITNESS IN DROSOPHILA MELANOGASTER.
    Fry JD; Heinsohn SL; Mackay TFC
    Evolution; 1996 Dec; 50(6):2316-2327. PubMed ID: 28565671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental effects on body size variation in Drosophila melanogaster and its cellular basis.
    de Moed GH; De Jong G; Scharloo W
    Genet Res; 1997 Aug; 70(1):35-43. PubMed ID: 9369097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster.
    Bochdanovits Z; van der Klis H; de Jong G
    Mol Biol Evol; 2003 Nov; 20(11):1760-6. PubMed ID: 12832628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.