These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 28565483)
1. MODELING THE GENETIC BASIS OF HETEROSIS: TESTS OF ALTERNATIVE HYPOTHESES. David P Evolution; 1997 Aug; 51(4):1049-1057. PubMed ID: 28565483 [TBL] [Abstract][Full Text] [Related]
2. THE FITNESS CONSEQUENCES OF MULTIPLE-LOCUS HETEROZYGOSITY: THE RELATIONSHIP BETWEEN HETEROZYGOSITY AND GROWTH RATE IN PITCH PINE (PINUS RIGIDA MILL.). Bush RM; Smouse PE; Ledig FT Evolution; 1987 Jul; 41(4):787-798. PubMed ID: 28564363 [TBL] [Abstract][Full Text] [Related]
3. THE FITNESS CONSEQUENCES OF MULTIPLE-LOCUS HETEROZYGOSITY UNDER THE MULTIPLICATIVE OVERDOMINANCE AND INBREEDING DEPRESSION MODELS. Smouse PE Evolution; 1986 Sep; 40(5):946-957. PubMed ID: 28556228 [TBL] [Abstract][Full Text] [Related]
4. Heterozygosity at a single locus explains a large proportion of variation in two fitness-related traits in great tits: a general or a local effect? García-Navas V; Cáliz-Campal C; Ferrer ES; Sanz JJ; Ortego J J Evol Biol; 2014 Dec; 27(12):2807-19. PubMed ID: 25370831 [TBL] [Abstract][Full Text] [Related]
5. Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Roff DA Evolution; 2002 Apr; 56(4):768-75. PubMed ID: 12038534 [TBL] [Abstract][Full Text] [Related]
6. A quantitative model of the relationship between phenotypic variance and heterozygosity at marker loci under partial selfing. David P Genetics; 1999 Nov; 153(3):1463-74. PubMed ID: 10545474 [TBL] [Abstract][Full Text] [Related]
7. Exploring the mechanisms underlying a heterozygosity-fitness correlation for canine size in the Antarctic fur seal Arctocephalus gazella. Hoffman JI; Forcada J; Amos W J Hered; 2010; 101(5):539-52. PubMed ID: 20457623 [TBL] [Abstract][Full Text] [Related]
8. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). Liang Q; Shang L; Wang Y; Hua J PLoS One; 2015; 10(11):e0143548. PubMed ID: 26618635 [TBL] [Abstract][Full Text] [Related]
9. Recent approaches into the genetic basis of inbreeding depression in plants. Carr DE; Dudash MR Philos Trans R Soc Lond B Biol Sci; 2003 Jun; 358(1434):1071-84. PubMed ID: 12831473 [TBL] [Abstract][Full Text] [Related]
10. Heterozygosity-fitness correlations and associative overdominance: new detection method and proof of principle in the Iberian wild boar. Malo AF; Coulson T Mol Ecol; 2009 Jul; 18(13):2741-2. PubMed ID: 19457188 [TBL] [Abstract][Full Text] [Related]
11. GENETIC BASIS OF INBREEDING DEPRESSION IN ARABIS PETRAEA. Kärkkäinen K; Kuittinen H; van Treuren R; Vogl C; Oikarinen S; Savolainen O Evolution; 1999 Oct; 53(5):1354-1365. PubMed ID: 28565542 [TBL] [Abstract][Full Text] [Related]
12. Heterosis at Allozyme Loci under Inbreeding and Crossbreeding in PINUS ATTENUATA. Strauss SH Genetics; 1986 May; 113(1):115-34. PubMed ID: 17246325 [TBL] [Abstract][Full Text] [Related]
13. Interval mapping of viability loci causing heterosis in Arabidopsis. Mitchell-Olds T Genetics; 1995 Jul; 140(3):1105-9. PubMed ID: 7672581 [TBL] [Abstract][Full Text] [Related]
14. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Hua J; Xing Y; Wu W; Xu C; Sun X; Yu S; Zhang Q Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2574-9. PubMed ID: 12604771 [TBL] [Abstract][Full Text] [Related]
15. An inbreeding model of associative overdominance during a population bottleneck. Bierne N; Tsitrone A; David P Genetics; 2000 Aug; 155(4):1981-90. PubMed ID: 10924490 [TBL] [Abstract][Full Text] [Related]