These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28565546)

  • 1. HIERARCHICAL COMPARISON OF GENETIC VARIANCE-COVARIANCE MATRICES. II COASTAL-INLAND DIVERGENCE IN THE GARTER SNAKE, THAMNOPHIS ELEGANS.
    Arnold SJ; Phillips PC
    Evolution; 1999 Oct; 53(5):1516-1527. PubMed ID: 28565546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIERARCHICAL COMPARISON OF GENETIC VARIANCE-COVARIANCE MATRICES. I. USING THE FLURY HIERARCHY.
    Phillips PC; Arnold SJ
    Evolution; 1999 Oct; 53(5):1506-1515. PubMed ID: 28565553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A test of the conjecture that G-matrices are more stable than B-matrices.
    Barker BS; Phillips PC; Arnold SJ
    Evolution; 2010 Sep; 64(9):2601-13. PubMed ID: 20455928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HOMOGENEITY OF THE GENETIC VARIANCE-COVARIANCE MATRIX FOR ANTIPREDATOR TRAITS IN TWO NATURAL POPULATIONS OF THE GARTER SNAKE THAMNOPHIS ORDINOIDES.
    Brodie ED
    Evolution; 1993 Jun; 47(3):844-854. PubMed ID: 28567905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type I error rates for testing genetic drift with phenotypic covariance matrices: a simulation study.
    Prôa M; O'Higgins P; Monteiro LR
    Evolution; 2013 Jan; 67(1):185-95. PubMed ID: 23289571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariate QST-FST comparisons: a neutrality test for the evolution of the g matrix in structured populations.
    Martin G; Chapuis E; Goudet J
    Genetics; 2008 Dec; 180(4):2135-49. PubMed ID: 18245845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: a case study in crickets.
    Bégin M; Roff DA
    Evolution; 2003 May; 57(5):1107-20. PubMed ID: 12836827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CORRELATIONAL SELECTION FOR COLOR PATTERN AND ANTIPREDATOR BEHAVIOR IN THE GARTER SNAKE THAMNOPHIS ORDINOIDES.
    Brodie ED
    Evolution; 1992 Oct; 46(5):1284-1298. PubMed ID: 28568995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic consequences of dietary specialization in populations of the garter snake, Thamnophis elegans.
    Britt EJ; Hicks JW; Bennett AF
    J Exp Biol; 2006 Aug; 209(Pt 16):3164-9. PubMed ID: 16888064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive divergence within and between ecotypes of the terrestrial garter snake, Thamnophis elegans, assessed with F(ST)-Q(ST) comparisons.
    Manier MK; Seyler CM; Arnold SJ
    J Evol Biol; 2007 Sep; 20(5):1705-19. PubMed ID: 17714288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the evolution of genetic variance using genetic covariance tensors.
    Hine E; Chenoweth SF; Rundle HD; Blows MW
    Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1523):1567-78. PubMed ID: 19414471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genetic analysis identifies source-sink dynamics for two sympatric garter snake species (Thamnophis elegans and Thamnophis sirtalis).
    Manier MK; Arnold SJ
    Mol Ecol; 2005 Nov; 14(13):3965-76. PubMed ID: 16262852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution.
    de Oliveira FB; Porto A; Marroig G
    J Hum Evol; 2009 Apr; 56(4):417-30. PubMed ID: 19362730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From micro- to macroevolution through quantitative genetic variation: positive evidence from field crickets.
    Bégin M; Roff DA
    Evolution; 2004 Oct; 58(10):2287-304. PubMed ID: 15562691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energetic advantages of slug specialization in garter snakes (genus Thamnophis).
    Britt EJ; Bennett AF
    Physiol Biochem Zool; 2008; 81(3):247-54. PubMed ID: 18419552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Q(St) meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits.
    Chenoweth SF; Blows MW
    Evolution; 2008 Jun; 62(6):1437-49. PubMed ID: 18346219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial divergence between slow- and fast-aging garter snakes.
    Schwartz TS; Arendsee ZW; Bronikowski AM
    Exp Gerontol; 2015 Nov; 71():135-46. PubMed ID: 26403677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphism and Geographic Variation in the Feeding Behavior of the Garter Snake Thamnophis elegans.
    Arnold SJ
    Science; 1977 Aug; 197(4304):676-8. PubMed ID: 17776270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of G matrix variation in two closely related cricket species, Gryllus firmus and G. pennsylvanicus.
    Bégin M; Roff DA
    J Evol Biol; 2001 Jan; 14(1):1-13. PubMed ID: 29280575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population differentiation in G matrix structure due to natural selection in Rana temporaria.
    Cano JM; Laurila A; Pało J; Merilä J
    Evolution; 2004 Sep; 58(9):2013-20. PubMed ID: 15521458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.