These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 28565907)
1. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series. Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907 [TBL] [Abstract][Full Text] [Related]
2. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Matter H; Güssregen S Bioorg Med Chem Lett; 2018 Aug; 28(14):2343-2352. PubMed ID: 29880400 [TBL] [Abstract][Full Text] [Related]
3. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. Abel R; Salam NK; Shelley J; Farid R; Friesner RA; Sherman W ChemMedChem; 2011 Jun; 6(6):1049-66. PubMed ID: 21506273 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study. Li Q; Gusarov S; Evoy S; Kovalenko A J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155 [TBL] [Abstract][Full Text] [Related]
5. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins. Yamazaki T; Kovalenko A J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382 [TBL] [Abstract][Full Text] [Related]
6. A molecular reconstruction approach to site-based 3D-RISM and comparison to GIST hydration thermodynamic maps in an enzyme active site. Nguyen C; Yamazaki T; Kovalenko A; Case DA; Gilson MK; Kurtzman T; Luchko T PLoS One; 2019; 14(7):e0219473. PubMed ID: 31291328 [TBL] [Abstract][Full Text] [Related]
7. Calculation of Thermodynamic Properties of Bound Water Molecules. Yang Y; Abdallah AHA; Lill MA Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations. Wahl J; Smieško M ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604 [TBL] [Abstract][Full Text] [Related]
9. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability. Raman EP; MacKerell AD J Am Chem Soc; 2015 Feb; 137(7):2608-21. PubMed ID: 25625202 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive 3D-RISM analysis of the hydration of small molecule binding sites in ligand-free protein structures. Yoshidome T; Ikeguchi M; Ohta M J Comput Chem; 2020 Oct; 41(28):2406-2419. PubMed ID: 32815201 [TBL] [Abstract][Full Text] [Related]
11. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design. Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344 [TBL] [Abstract][Full Text] [Related]
12. Protein pharmacophore selection using hydration-site analysis. Hu B; Lill MA J Chem Inf Model; 2012 Apr; 52(4):1046-60. PubMed ID: 22397751 [TBL] [Abstract][Full Text] [Related]
13. The Role of Interfacial Water in Protein-Ligand Binding: Insights from the Indirect Solvent Mediated Potential of Mean Force. Cui D; Zhang BW; Matubayasi N; Levy RM J Chem Theory Comput; 2018 Feb; 14(2):512-526. PubMed ID: 29262255 [TBL] [Abstract][Full Text] [Related]
14. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy. Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380 [TBL] [Abstract][Full Text] [Related]
15. Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM. Du QS; Liu PJ; Huang RB J Mol Graph Model; 2008 Feb; 26(6):1014-9. PubMed ID: 17913525 [TBL] [Abstract][Full Text] [Related]
16. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. Abel R; Young T; Farid R; Berne BJ; Friesner RA J Am Chem Soc; 2008 Mar; 130(9):2817-31. PubMed ID: 18266362 [TBL] [Abstract][Full Text] [Related]
17. Molecular modeling studies of [6,6,5] Tricyclic Fused Oxazolidinones as FXa inhibitors using 3D-QSAR, Topomer CoMFA, molecular docking and molecular dynamics simulations. Xu C; Ren Y Bioorg Med Chem Lett; 2015 Oct; 25(20):4522-8. PubMed ID: 26343829 [TBL] [Abstract][Full Text] [Related]
18. An attempt to incorporate effect of direct interaction between a ligand and explicit water molecules into MM/3D-RISM. Gohda K Chem Biol Drug Des; 2018 Oct; 92(4):1788-1800. PubMed ID: 29962020 [TBL] [Abstract][Full Text] [Related]
19. The role of hydration effects in 5-fluorouridine binding to SOD1: insight from a new 3D-RISM-KH based protocol for including structural water in docking simulations. Hinge VK; Blinov N; Roy D; Wishart DS; Kovalenko A J Comput Aided Mol Des; 2019 Oct; 33(10):913-926. PubMed ID: 31686367 [TBL] [Abstract][Full Text] [Related]
20. Role of Solvation in Drug Design as Revealed by the Statistical Mechanics Integral Equation Theory of Liquids. Yoshida N J Chem Inf Model; 2017 Nov; 57(11):2646-2656. PubMed ID: 28991467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]