These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28566002)

  • 1. A two-stage cold isostatic pressing and gelling approach for fabricating a therapeutically loaded amorphous calcium polyphosphate local delivery system.
    Comeau P; Filiaggi M
    J Biomater Appl; 2017 Jul; 32(1):126-136. PubMed ID: 28566002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of xSrO-(50 - x)CaO-50P2O5 glasses with x=0, 5, or 10 mol% for potential use in a local delivery system for osteomyelitis treatment.
    Comeau PA; Filiaggi MJ
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():639-47. PubMed ID: 26478355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.
    Dion A; Langman M; Hall G; Filiaggi M
    Biomaterials; 2005 Dec; 26(35):7276-85. PubMed ID: 16024076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compaction strategies for modifying the drug delivery capabilities of gelled calcium polyphosphate matrices.
    Petrone C; Hall G; Langman M; Filiaggi MJ
    Acta Biomater; 2008 Mar; 4(2):403-13. PubMed ID: 17997374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.
    Makarov C; Cohen V; Raz-Pasteur A; Gotman I
    Eur J Pharm Sci; 2014 Oct; 62():49-56. PubMed ID: 24859314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of processing on the structural characteristics of vancomycin-loaded amorphous calcium phosphate matrices.
    Dion A; Berno B; Hall G; Filiaggi MJ
    Biomaterials; 2005 Jul; 26(21):4486-94. PubMed ID: 15701378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelled calcium polyphosphate matrices delay antibiotic release.
    Schofield SC; Berno B; Langman M; Hall G; Filiaggi MJ
    J Dent Res; 2006 Jul; 85(7):643-7. PubMed ID: 16798866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of isostatic compression on the stability of vancomycin loaded with a calcium phosphate-implantable drug delivery device.
    Gautier H; Caillon J; Le Ray AM; Daculsi G; Merle C
    J Biomed Mater Res; 2000 Nov; 52(2):308-14. PubMed ID: 10951369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination therapy with vancomycin-loaded calcium sulfate and vancomycin-loaded PMMA in the treatment of chronic osteomyelitis.
    Luo S; Jiang T; Yang Y; Yang X; Zhao J
    BMC Musculoskelet Disord; 2016 Dec; 17(1):502. PubMed ID: 28007027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds.
    Zhou J; Fang T; Wang Y; Dong J
    J Biomed Mater Res A; 2012 Sep; 100(9):2295-301. PubMed ID: 22499502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method.
    Gautier H; Merle C; Auget JL; Daculsi G
    Biomaterials; 2000 Feb; 21(3):243-9. PubMed ID: 10646940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo release of vancomycin from biodegradable beads.
    Liu SJ; Wen-Neng Ueng S; Lin SS; Chan EC
    J Biomed Mater Res; 2002; 63(6):807-13. PubMed ID: 12418028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis.
    Chung MF; Chia WT; Liu HY; Hsiao CW; Hsiao HC; Yang CM; Sung HW
    Adv Healthc Mater; 2014 Nov; 3(11):1854-61. PubMed ID: 24789379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro elution of vancomycin from calcium phosphate cement.
    Sasaki T; Ishibashi Y; Katano H; Nagumo A; Toh S
    J Arthroplasty; 2005 Dec; 20(8):1055-9. PubMed ID: 16376263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vitro elution characteristics of vancomycin from calcium phosphate-calcium sulfate beads.
    Scharer BM; Sanicola SM
    J Foot Ankle Surg; 2009; 48(5):540-2. PubMed ID: 19700115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bead size and polymerization in PMMA bone cement on vancomycin release.
    Shinsako K; Okui Y; Matsuda Y; Kunimasa J; Otsuka M
    Biomed Mater Eng; 2008; 18(6):377-85. PubMed ID: 19197114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium phosphate bone cements for local vancomycin delivery.
    Loca D; Sokolova M; Locs J; Smirnova A; Irbe Z
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():106-113. PubMed ID: 25686933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced drug delivery of antibiotic-loaded acrylic bone cements using calcium phosphate spheres.
    Qin T; López A; Öhman C; Engqvist H; Persson C; Xia W
    J Appl Biomater Funct Mater; 2015 Oct; 13(3):e241-7. PubMed ID: 26108428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Antimicrobial Material-Loaded Porous Tricalcium Phosphate Beads for Treatment of Bone Infections.
    He W; Wu Z; Wu Y; Cai Y; Cui Z; Yu B; Hong Y
    ACS Appl Bio Mater; 2021 Aug; 4(8):6280-6293. PubMed ID: 35006920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Vancomycin Release from Calcium Phosphate-Based Cement by Carboxymethyl Cellulose for Prevention of Osteomyelitis.
    Lin B; Caldwell C; Bhaduri S; Goel V; Agarwal A
    Surg Infect (Larchmt); 2017; 18(2):221-222. PubMed ID: 28009535
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.