BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 28566301)

  • 1. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'.
    Schaefer M; Kapoor U; Jantsch MF
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitranscriptomic Mass Spectrometry.
    Wang H; Shnaider FM; Martin E; Chiu NHL
    Methods Mol Biol; 2024; 2822():335-349. PubMed ID: 38907927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the epigenetic modifications of DNA and RNA.
    Zhao LY; Song J; Liu Y; Song CX; Yi C
    Protein Cell; 2020 Nov; 11(11):792-808. PubMed ID: 32440736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The birth of the Epitranscriptome: deciphering the function of RNA modifications.
    Saletore Y; Meyer K; Korlach J; Vilfan ID; Jaffrey S; Mason CE
    Genome Biol; 2012 Oct; 13(10):175. PubMed ID: 23113984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitranscriptomics of cardiovascular diseases (Review).
    Leptidis S; Papakonstantinou E; Diakou KI; Pierouli K; Mitsis T; Dragoumani K; Bacopoulou F; Sanoudou D; Chrousos GP; Vlachakis D
    Int J Mol Med; 2022 Jan; 49(1):. PubMed ID: 34791505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going global: the new era of mapping modifications in RNA.
    Limbach PA; Paulines MJ
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27251302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular transcriptomics and epigenomics using next-generation sequencing: challenges, progress, and opportunities.
    Wu PY; Chandramohan R; Phan JH; Mahle WT; Gaynor JW; Maher KO; Wang MD
    Circ Cardiovasc Genet; 2014 Oct; 7(5):701-10. PubMed ID: 25518043
    [No Abstract]   [Full Text] [Related]  

  • 8. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives.
    Sikorski V; Karjalainen P; Blokhina D; Oksaharju K; Khan J; Katayama S; Rajala H; Suihko S; Tuohinen S; Teittinen K; Nummi A; Nykänen A; Eskin A; Stark C; Biancari F; Kiss J; Simpanen J; Ropponen J; Lemström K; Savinainen K; Lalowski M; Kaarne M; Jormalainen M; Elomaa O; Koivisto P; Raivio P; Bäckström P; Dahlbacka S; Syrjälä S; Vainikka T; Vähäsilta T; Tuncbag N; Karelson M; Mervaala E; Juvonen T; Laine M; Laurikka J; Vento A; Kankuri E
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34205699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Epitranscriptome Module Detection from m
    Chen K; Wei Z; Liu H; de Magalhães JP; Rong R; Lu Z; Meng J
    Biomed Res Int; 2018; 2018():2075173. PubMed ID: 30013979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative mapping of the mammalian epitranscriptome.
    He B; Chen Y; Yi C
    Curr Opin Genet Dev; 2024 May; 87():102212. PubMed ID: 38823337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D epigenomics and 3D epigenopathies.
    Lee KH; Kim J; Kim JH
    BMB Rep; 2024 May; 57(5):216-231. PubMed ID: 38627948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections.
    Pozhydaieva N; Wolfram-Schauerte M; Keuthen H; Höfer K
    Curr Opin Microbiol; 2024 Feb; 77():102417. PubMed ID: 38217927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics.
    Liu L; Song B; Ma J; Song Y; Zhang SY; Tang Y; Wu X; Wei Z; Chen K; Su J; Rong R; Lu Z; de Magalhães JP; Rigden DJ; Zhang L; Zhang SW; Huang Y; Lei X; Liu H; Meng J
    Comput Struct Biotechnol J; 2020; 18():1587-1604. PubMed ID: 32670500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of chemical modifications on RNA.
    Goh WSS; Kuang Y
    Biophys Rev; 2024 Feb; 16(1):79-87. PubMed ID: 38495447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of RNA modifications in the brain and beyond.
    Chen AY; Owens MC; Liu KF
    Mol Psychiatry; 2023 Jul; 28(7):2737-2749. PubMed ID: 37138184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering.
    Chen ZB; He M; Li JY; Shyy JY; Chien S
    Annu Rev Biomed Eng; 2023 Jun; 25():157-184. PubMed ID: 36913673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-read sequencing in the era of epigenomics and epitranscriptomics.
    Lucas MC; Novoa EM
    Nat Methods; 2023 Jan; 20(1):25-29. PubMed ID: 36635539
    [No Abstract]   [Full Text] [Related]  

  • 18. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications.
    Helm M; Bohnsack MT; Carell T; Dalpke A; Entian KD; Ehrenhofer-Murray A; Ficner R; Hammann C; Höbartner C; Jäschke A; Jeltsch A; Kaiser S; Klassen R; Leidel SA; Marx A; Mörl M; Meier JC; Meister G; Rentmeister A; Rodnina M; Roignant JY; Schaffrath R; Stadler P; Stafforst T
    ACS Chem Biol; 2023 Dec; 18(12):2441-2449. PubMed ID: 37962075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction to 'The Epitranscriptome'.
    Kleiner RE; Höbartner C; Jia G
    RSC Chem Biol; 2024 Apr; 5(4):271-272. PubMed ID: 38576727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac cryptographers: cracking the code of the epitranscriptome.
    Rabolli CP; Accornero F
    Eur Heart J; 2024 Jun; 45(23):2034-2036. PubMed ID: 38339963
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.