These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28566358)

  • 21. Malate dehydrogenase: a model for structure, evolution, and catalysis.
    Goward CR; Nicholls DJ
    Protein Sci; 1994 Oct; 3(10):1883-8. PubMed ID: 7849603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase.
    Trejo F; Gelpí JL; Ferrer A; Boronat A; Busquets M; Cortés A
    Protein Eng; 2001 Nov; 14(11):911-7. PubMed ID: 11742111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid sequence differences cannot fully explain interspecific variation in thermal sensitivities of gobiid fish A4-lactate dehydrogenases (A4-LDHs).
    Fields P; Somero G
    J Exp Biol; 1997; 200(Pt 13):1839-50. PubMed ID: 9319749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance.
    Sinclair BJ; Marshall DJ; Singh S; Chown SL
    J Comp Physiol B; 2004 Nov; 174(8):617-24. PubMed ID: 15517285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal adaptation of cytoplasmic malate dehydrogenases of eastern Pacific barracuda (Sphyraena spp): the role of differential isoenzyme expression.
    Lin JJ; Somero G
    J Exp Biol; 1995; 198(Pt 2):551-60. PubMed ID: 9318248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme changes accompanying thermal acclimation in two species of pleurocerid snails.
    Pugh CR; Ultsch GR; Lindahl R
    J Exp Zool; 1979 Jul; 209(1):65-72. PubMed ID: 490130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (genus Tegula): implications for vertical zonation.
    Stenseng E; Braby CE; Somero GN
    Biol Bull; 2005 Apr; 208(2):138-44. PubMed ID: 15837963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases.
    Dalhus B; Saarinen M; Sauer UH; Eklund P; Johansson K; Karlsson A; Ramaswamy S; Bjørk A; Synstad B; Naterstad K; Sirevåg R; Eklund H
    J Mol Biol; 2002 May; 318(3):707-21. PubMed ID: 12054817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights.
    Tomanek L; Somero GN
    Physiol Biochem Zool; 2000; 73(2):249-56. PubMed ID: 10801403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation of the thermal stabilities of two malate dehydrogenases by comparison of their three-dimensional structures.
    Duffield ML; Nicholls DJ; Atkinson T; Scawen MD
    J Mol Graph; 1994 Mar; 12(1):14-21, 34. PubMed ID: 8011596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clonorchis sinensis: molecular cloning and functional expression of novel cytosolic malate dehydrogenase.
    Zheng N; Xu J; Wu Z; Chen J; Hu X; Song L; Yang G; Ji C; Chen S; Gu S; Ying K; Yu X
    Exp Parasitol; 2005 Apr; 109(4):220-7. PubMed ID: 15755419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence.
    Spampinato CP; Ferreyra ML; Andreo CS
    Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Barnase thermal titration via molecular dynamics simulations: detection of early denaturation sites.
    Yin J; Bowen D; Southerland WM
    J Mol Graph Model; 2006 Jan; 24(4):233-43. PubMed ID: 16213760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Malate dehydrogenases in phototrophic purple bacteria. Thermal stability, amino acid composition and immunological properties.
    Tayeh MA; Madigan MT
    Biochem J; 1988 Jun; 252(2):595-600. PubMed ID: 3137931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of hydrophobic core of E. coli malate dehydrogenase based on the side-chain packing.
    Kono H; Nishiyama M; Tanokura M; Doi J
    Pac Symp Biocomput; 1997; ():210-21. PubMed ID: 9390293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoregulatory behavior, heat gain and thermal tolerance in the periwinkle Echinolittorina peruviana in central Chile.
    Muñoz JL; Randall Finke G; Camus PA; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):92-8. PubMed ID: 16137904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of the turnover number of thermostable malate dehydrogenase by deleting hydrogen bonds around the catalytic site.
    Nishiyama M; Kinoshita M; Kudo H; Horinouchi S; Tanokura M
    Biochem Biophys Res Commun; 1996 Aug; 225(3):844-8. PubMed ID: 8780700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of dehydrogenases. III. Malate dehydrogenases.
    Müller J; Klein C
    Biochim Biophys Acta; 1982 Sep; 707(1):133-41. PubMed ID: 7138874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.