BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28566700)

  • 1. Controlling Light Transmission Through Highly Scattering Media Using Semi-Definite Programming as a Phase Retrieval Computation Method.
    N'Gom M; Lien MB; Estakhri NM; Norris TB; Michielssen E; Nadakuditi RR
    Sci Rep; 2017 May; 7(1):2518. PubMed ID: 28566700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing randomness to control the polarization of light transmitted through highly scattering media.
    Tripathi S; Toussaint KC
    Opt Express; 2014 Feb; 22(4):4412-22. PubMed ID: 24663764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers.
    Kim K; Yu H; Lee K; Park Y
    Sci Rep; 2017 Mar; 7():44435. PubMed ID: 28322268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts.
    Jin C; Nadakuditi RR; Michielssen E; Rand SC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1788-800. PubMed ID: 25121536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media.
    Jin C; Nadakuditi RR; Michielssen E; Rand SC
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1592-602. PubMed ID: 24323218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of focusing through scattering media using the continuous sequential algorithm.
    Thompson JV; Hokr BH; Yakovlev VV
    J Mod Opt; 2016; 63(1):80-84. PubMed ID: 27018179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering control in transmission and reflection with neural networks.
    Turpin A; Vishniakou I; Seelig JD
    Opt Express; 2018 Nov; 26(23):30911-30929. PubMed ID: 30469982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques.
    Drémeau A; Liutkus A; Martina D; Katz O; Schülke C; Krzakala F; Gigan S; Daudet L
    Opt Express; 2015 May; 23(9):11898-911. PubMed ID: 25969280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming balanced optical beam splitters in white paint.
    Huisman SR; Huisman TJ; Goorden SA; Mosk AP; Pinkse PW
    Opt Express; 2014 Apr; 22(7):8320-32. PubMed ID: 24718206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing light through scattering media by transmission matrix inversion.
    Xu J; Ruan H; Liu Y; Zhou H; Yang C
    Opt Express; 2017 Oct; 25(22):27234-27246. PubMed ID: 29092201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization control of multiply scattered light through random media by wavefront shaping.
    Guan Y; Katz O; Small E; Zhou J; Silberberg Y
    Opt Lett; 2012 Nov; 37(22):4663-5. PubMed ID: 23164872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission of independent signals through a multimode fiber using digital optical phase conjugation.
    Czarske JW; Haufe D; Koukourakis N; Büttner L
    Opt Express; 2016 Jun; 24(13):15128-36. PubMed ID: 27410664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system.
    N'Gom M; Norris TB; Michielssen E; Nadakuditi RR
    Opt Lett; 2018 Feb; 43(3):419-422. PubMed ID: 29400804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media.
    Popoff SM; Lerosey G; Carminati R; Fink M; Boccara AC; Gigan S
    Phys Rev Lett; 2010 Mar; 104(10):100601. PubMed ID: 20366410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping.
    Hemphill AS; Shen Y; Liu Y; Wang LV
    Appl Phys Lett; 2017 Nov; 111(22):221109. PubMed ID: 29249832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical information transmission through complex scattering media with optical-channel-based intensity streaming.
    Ruan H; Xu J; Yang C
    Nat Commun; 2021 Apr; 12(1):2411. PubMed ID: 33893304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focusing Coherent Light through Volume Scattering Phantoms via Wavefront Shaping.
    Fritzsche N; Ott F; Pink K; Kienle A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-tolerant wavefront shaping in a Hadamard basis.
    Mastiani B; Vellekoop IM
    Opt Express; 2021 May; 29(11):17534-17541. PubMed ID: 34154294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media.
    Zhao T; Ourselin S; Vercauteren T; Xia W
    Opt Lett; 2021 Mar; 46(5):1165-1168. PubMed ID: 33649683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable multiport optical circuits in opaque scattering materials.
    Huisman SR; Huisman TJ; Wolterink TA; Mosk AP; Pinkse PW
    Opt Express; 2015 Feb; 23(3):3102-16. PubMed ID: 25836169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.