These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28566715)
1. Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Bai CH; Wang DY; Wang HF; Zhu AD; Zhang S Sci Rep; 2017 May; 7(1):2545. PubMed ID: 28566715 [TBL] [Abstract][Full Text] [Related]
2. Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and Coulomb-type interaction. Mekonnen HD; Tesfahannes TG; Darge TY; Kumela AG Sci Rep; 2023 Aug; 13(1):13800. PubMed ID: 37612322 [TBL] [Abstract][Full Text] [Related]
3. Manipulating bipartite and tripartite quantum correlations of mechanical oscillators via optomechanical interaction. Peng R; Yang Z; Wang D; Zhou L Opt Express; 2023 Oct; 31(22):35754-35764. PubMed ID: 38017740 [TBL] [Abstract][Full Text] [Related]
4. Quantum squeezing-induced quantum entanglement and EPR steering in a coupled optomechanical system. Wu SX; Bai CH; Li G; Yu CS; Zhang T Opt Express; 2024 Jan; 32(1):260-274. PubMed ID: 38175054 [TBL] [Abstract][Full Text] [Related]
5. Quantum squeezing in a modulated optomechanical system. Zhang ZC; Wang YP; Yu YF; Zhang ZM Opt Express; 2018 Apr; 26(9):11915-11927. PubMed ID: 29716108 [TBL] [Abstract][Full Text] [Related]
7. Squeezed vacuum interaction with an optomechanical cavity containing a quantum well. Jabri H; Eleuch H Sci Rep; 2022 Mar; 12(1):3658. PubMed ID: 35256636 [TBL] [Abstract][Full Text] [Related]
8. Synchronization enhancement of indirectly coupled oscillators via periodic modulation in an optomechanical system. Du L; Fan CH; Zhang HX; Wu JH Sci Rep; 2017 Nov; 7(1):15834. PubMed ID: 29158548 [TBL] [Abstract][Full Text] [Related]
9. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling. Zhang Z; Wang X Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955 [TBL] [Abstract][Full Text] [Related]
10. Optomechanical squeezing with strong harmonic mechanical driving. Lin XY; Ye GZ; Liu Y; Jiang YK; Wu H Opt Express; 2024 Mar; 32(6):8847-8861. PubMed ID: 38571132 [TBL] [Abstract][Full Text] [Related]
11. Observation of generalized optomechanical coupling and cooling on cavity resonance. Sawadsky A; Kaufer H; Nia RM; Tarabrin SP; Khalili FY; Hammerer K; Schnabel R Phys Rev Lett; 2015 Jan; 114(4):043601. PubMed ID: 25679890 [TBL] [Abstract][Full Text] [Related]
12. Strong single-photon optomechanical coupling in a hybrid quantum system. Chen J; Li Z; Luo XQ; Xiong W; Wang M; Li HC Opt Express; 2021 Sep; 29(20):32639-32648. PubMed ID: 34615329 [TBL] [Abstract][Full Text] [Related]
13. Multi-field-driven optomechanical entanglement. Yang J; Lu TX; Peng M; Liu J; Jiao YF; Jing H Opt Express; 2024 Jan; 32(1):785-794. PubMed ID: 38175098 [TBL] [Abstract][Full Text] [Related]
14. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing. Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799 [TBL] [Abstract][Full Text] [Related]
15. Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification. Peano V; Schwefel HG; Marquardt Ch; Marquardt F Phys Rev Lett; 2015 Dec; 115(24):243603. PubMed ID: 26705633 [TBL] [Abstract][Full Text] [Related]