BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28566761)

  • 21. Genome-wide characterization of mammalian promoters with distal enhancer functions.
    Dao LTM; Galindo-Albarrán AO; Castro-Mondragon JA; Andrieu-Soler C; Medina-Rivera A; Souaid C; Charbonnier G; Griffon A; Vanhille L; Stephen T; Alomairi J; Martin D; Torres M; Fernandez N; Soler E; van Helden J; Puthier D; Spicuglia S
    Nat Genet; 2017 Jul; 49(7):1073-1081. PubMed ID: 28581502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells.
    Zhong G; Wang H; Li Y; Tran MH; Farzan M
    Nat Chem Biol; 2017 Aug; 13(8):839-841. PubMed ID: 28628097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unexpected consequences: exon skipping caused by CRISPR-generated mutations.
    Sharpe JJ; Cooper TA
    Genome Biol; 2017 Jun; 18(1):109. PubMed ID: 28615035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplex gene regulation by CRISPR-ddCpf1.
    Zhang X; Wang J; Cheng Q; Zheng X; Zhao G; Wang J
    Cell Discov; 2017; 3():17018. PubMed ID: 28607761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
    Nishimasu H; Yamano T; Gao L; Zhang F; Ishitani R; Nureki O
    Mol Cell; 2017 Jul; 67(1):139-147.e2. PubMed ID: 28595896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species.
    Knowlton MN; Smith CL
    Mamm Genome; 2017 Aug; 28(7-8):367-376. PubMed ID: 28589392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted Deletion of an Entire Chromosome Using CRISPR/Cas9.
    Adikusuma F; Williams N; Grutzner F; Hughes J; Thomas P
    Mol Ther; 2017 Aug; 25(8):1736-1738. PubMed ID: 28633863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review.
    Musunuru K
    JAMA Cardiol; 2017 Aug; 2(8):914-919. PubMed ID: 28614576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity, classification and evolution of CRISPR-Cas systems.
    Koonin EV; Makarova KS; Zhang F
    Curr Opin Microbiol; 2017 Jun; 37():67-78. PubMed ID: 28605718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A systematic evaluation of nucleotide properties for CRISPR sgRNA design.
    Kuan PF; Powers S; He S; Li K; Zhao X; Huang B
    BMC Bioinformatics; 2017 Jun; 18(1):297. PubMed ID: 28587596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells.
    Zhang Y; Zhang X; Cheng C; Mu W; Liu X; Li N; Wei X; Liu X; Xia C; Wang H
    Front Med; 2017 Dec; 11(4):554-562. PubMed ID: 28625015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.
    Fei T; Chen Y; Xiao T; Li W; Cato L; Zhang P; Cotter MB; Bowden M; Lis RT; Zhao SG; Wu Q; Feng FY; Loda M; He HH; Liu XS; Brown M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5207-E5215. PubMed ID: 28611215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the elementary structural units of the DNA damage response.
    Natale F; Rapp A; Yu W; Maiser A; Harz H; Scholl A; Grulich S; Anton T; Hörl D; Chen W; Durante M; Taucher-Scholz G; Leonhardt H; Cardoso MC
    Nat Commun; 2017 Jun; 8():15760. PubMed ID: 28604675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Edited T Cell Therapies.
    Delhove JMKM; Qasim W
    Curr Stem Cell Rep; 2017; 3(2):124-136. PubMed ID: 28596938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Application of CRISPR/Cas Technology to Efficiently Model Complex Cancer Genomes in Stem Cells.
    Albitar A; Rohani B; Will B; Yan A; Gallicano GI
    J Cell Biochem; 2018 Jan; 119(1):134-140. PubMed ID: 28594094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice.
    Liu Y; Qi X; Zeng Z; Wang L; Wang J; Zhang T; Xu Q; Shen C; Zhou G; Yang S; Chen X; Lu F
    Sci Rep; 2017 Jun; 7(1):2796. PubMed ID: 28584302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A decade of discovery: CRISPR functions and applications.
    Barrangou R; Horvath P
    Nat Microbiol; 2017 Jun; 2():17092. PubMed ID: 28581505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why Gene Editors Like CRISPR/Cas May Be a Game-Changer for Neuroweapons.
    DiEuliis D; Giordano J
    Health Secur; 2017; 15(3):296-302. PubMed ID: 28574731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.