BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28566761)

  • 61. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [The application of CRISPR-Cas9 gene editing technology in viral infection diseases].
    Yin LJ; Hu SQ; Guo F
    Yi Chuan; 2015 May; 37(5):412-8. PubMed ID: 25998428
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature.
    Schlune A; Vom Dahl S; Häussinger D; Ensenauer R; Mayatepek E
    Amino Acids; 2015 Sep; 47(9):1751-62. PubMed ID: 26123990
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9.
    Yang Y; Zhang X; Yi L; Hou Z; Chen J; Kou X; Zhao Y; Wang H; Sun XF; Jiang C; Wang Y; Gao S
    Stem Cells Transl Med; 2016 Jan; 5(1):8-19. PubMed ID: 26676643
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hyperargininemia due to liver arginase deficiency.
    Crombez EA; Cederbaum SD
    Mol Genet Metab; 2005 Mar; 84(3):243-51. PubMed ID: 15694174
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Arginase impedes the resolution of colitis by altering the microbiome and metabolome.
    Baier J; Gänsbauer M; Giessler C; Arnold H; Muske M; Schleicher U; Lukassen S; Ekici A; Rauh M; Daniel C; Hartmann A; Schmid B; Tripal P; Dettmer K; Oefner PJ; Atreya R; Wirtz S; Bogdan C; Mattner J
    J Clin Invest; 2020 Nov; 130(11):5703-5720. PubMed ID: 32721946
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRISPR/Cas9: at the cutting edge of hepatology.
    Pankowicz FP; Jarrett KE; Lagor WR; Bissig KD
    Gut; 2017 Jul; 66(7):1329-1340. PubMed ID: 28487442
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sodium phenylbutyrate improved the clinical state in an adult patient with arginase 1 deficiency.
    Matsufuji M; Takeshita E; Nakashima M; Watanabe Y; Fukui K; Hanai T; Ishibashi H; Takashima S
    Brain Dev; 2020 Feb; 42(2):231-235. PubMed ID: 31604595
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Epidemiology, methods of diagnosis, and clinical management of patients with arginase 1 deficiency (ARG1-D): A systematic review.
    Bin Sawad A; Jackimiec J; Bechter M; Trucillo A; Lindsley K; Bhagat A; Uyei J; Diaz GA
    Mol Genet Metab; 2022; 137(1-2):153-163. PubMed ID: 36049366
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Clinical effect and safety profile of pegzilarginase in patients with arginase 1 deficiency.
    Diaz GA; Schulze A; McNutt MC; Leão-Teles E; Merritt JL; Enns GM; Batzios S; Bannick A; Zori RT; Sloan LS; Potts SL; Bubb G; Quinn AG
    J Inherit Metab Dis; 2021 Jul; 44(4):847-856. PubMed ID: 33325055
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
    Takayama K; Igai K; Hagihara Y; Hashimoto R; Hanawa M; Sakuma T; Tachibana M; Sakurai F; Yamamoto T; Mizuguchi H
    Nucleic Acids Res; 2017 May; 45(9):5198-5207. PubMed ID: 28334759
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The use of CRISPR/Cas associated technologies for cell transplant applications.
    Cowan PJ
    Curr Opin Organ Transplant; 2016 Oct; 21(5):461-6. PubMed ID: 27517504
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mouse model for human arginase deficiency.
    Iyer RK; Yoo PK; Kern RM; Rozengurt N; Tsoa R; O'Brien WE; Yu H; Grody WW; Cederbaum SD
    Mol Cell Biol; 2002 Jul; 22(13):4491-8. PubMed ID: 12052859
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prenatal diagnosis for arginase deficiency by second-trimester fetal erythrocyte arginase assay and first-trimester ARG1 mutation analysis.
    Korman SH; Gutman A; Stemmer E; Kay BS; Ben-Neriah Z; Zeigler M
    Prenat Diagn; 2004 Nov; 24(11):857-60. PubMed ID: 15565656
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.