BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28566818)

  • 1. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment.
    Kappanayil M; Koneti NR; Kannan RR; Kottayil BP; Kumar K
    Ann Pediatr Cardiol; 2017; 10(2):117-125. PubMed ID: 28566818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments.
    Lau IWW; Liu D; Xu L; Fan Z; Sun Z
    PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models.
    Lau I; Wong YH; Yeong CH; Abdul Aziz YF; Md Sari NA; Hashim SA; Sun Z
    Quant Imaging Med Surg; 2019 Jan; 9(1):107-114. PubMed ID: 30788252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of three-dimensional cardiac models from computed tomography angiography.
    Stieger-Vanegas SM; Scollan KF
    J Vet Cardiol; 2024 Feb; 51():195-206. PubMed ID: 38198977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of modern three-dimensional imaging models to guide surgical planning for local control of pediatric extracranial solid tumors.
    Shah NR; Weadock WJ; Williams KM; Moreci R; Stoll T; Joshi A; Petroze R; Newman EA
    Pediatr Blood Cancer; 2024 May; 71(5):e30933. PubMed ID: 38430473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.
    Kiraly L
    Transl Pediatr; 2018 Apr; 7(2):129-138. PubMed ID: 29770294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and congenital heart disease interventions: the role of three-dimensional printing.
    Meier LM; Meineri M; Qua Hiansen J; Horlick EM
    Neth Heart J; 2017 Feb; 25(2):65-75. PubMed ID: 28083857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Value of Using Patient-Specific 3D-Printed Anatomical Models in Surgical Planning for Patients With Complex Multifibroid Uteri.
    Flaxman TE; Cooke CM; Miguel OX; Sheikh A; McInnes M; Duigenan S; Singh SS
    J Obstet Gynaecol Can; 2024 Mar; 46(6):102435. PubMed ID: 38458270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D MODEL of an anatomically inert human hand: feasibility study.
    Lucchino N; Pialat JB; Marquette C; Courtial E; Erhard L; Voulliaume D; Mojallal A; Gazarian A
    Hand Surg Rehabil; 2024 Apr; ():101709. PubMed ID: 38685316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern tools in congenital heart disease imaging and procedure planning: a European survey.
    Iannotta M; d'Aiello FA; Van De Bruaene A; Caruso R; Conte G; Ferrero P; Bassareo PP; Pasqualin G; Chiarello C; Militaru C; Giamberti A; Bognoni L; Chessa M
    J Cardiovasc Med (Hagerstown); 2024 Jan; 25(1):76-87. PubMed ID: 38079284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of three-dimensional printed biomodels in endoscopic spinal surgery.
    Huang AZB; Mobbs RJ
    J Spine Surg; 2024 Mar; 10(1):1-7. PubMed ID: 38567013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printing in a patient with pulmonary artery pseudoaneurysm and complex congenital heart disease-A case report.
    Zhu Y; Zhang XE; Li Q; Yao H
    Clin Case Rep; 2020 Nov; 8(11):2107-2110. PubMed ID: 33235737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Reality Treatment Planning for Congenital Heart Disease.
    Krasemann T; Branstetter J
    JACC Case Rep; 2021 Oct; 3(14):1584-1585. PubMed ID: 34729505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study.
    Valverde I; Gomez-Ciriza G; Hussain T; Suarez-Mejias C; Velasco-Forte MN; Byrne N; OrdoƱez A; Gonzalez-Calle A; Anderson D; Hazekamp MG; Roest AAW; Rivas-Gonzalez J; Uribe S; El-Rassi I; Simpson J; Miller O; Ruiz E; Zabala I; Mendez A; Manso B; Gallego P; Prada F; Cantinotti M; Ait-Ali L; Merino C; Parry A; Poirier N; Greil G; Razavi R; Gomez-Cia T; Hosseinpour AR
    Eur J Cardiothorac Surg; 2017 Dec; 52(6):1139-1148. PubMed ID: 28977423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
    Abudayyeh I; Gordon B; Ansari MM; Jutzy K; Stoletniy L; Hilliard A
    J Interv Cardiol; 2018 Jun; 31(3):375-383. PubMed ID: 28948646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation.
    Yoo SJ; Hussein N; Peel B; Coles J; van Arsdell GS; Honjo O; Haller C; Lam CZ; Seed M; Barron D
    Front Pediatr; 2021; 9():621672. PubMed ID: 33614554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.