These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 28566818)
1. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment. Kappanayil M; Koneti NR; Kannan RR; Kottayil BP; Kumar K Ann Pediatr Cardiol; 2017; 10(2):117-125. PubMed ID: 28566818 [TBL] [Abstract][Full Text] [Related]
2. Patient-specific three-dimensional printing for Kommerell's diverticulum. Sun X; Zhang H; Zhu K; Wang C Int J Cardiol; 2018 Mar; 255():184-187. PubMed ID: 29290421 [TBL] [Abstract][Full Text] [Related]
3. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease. Yıldız O; Köse B; Tanıdır IC; Pekkan K; Güzeltaş A; Haydin S Diagn Interv Radiol; 2021 Jul; 27(4):488-496. PubMed ID: 34313233 [TBL] [Abstract][Full Text] [Related]
4. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery]. Király L Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience. Kiraly L; Shah NC; Abdullah O; Al-Ketan O; Rowshan R Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827702 [TBL] [Abstract][Full Text] [Related]
6. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions? Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304 [TBL] [Abstract][Full Text] [Related]
7. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease. Xu JJ; Luo YJ; Wang JH; Xu WZ; Shi Z; Fu JZ; Shu Q World J Pediatr; 2019 Jun; 15(3):246-254. PubMed ID: 30796731 [TBL] [Abstract][Full Text] [Related]
8. Clinical Application and Multidisciplinary Assessment of Three Dimensional Printing in Double Outlet Right Ventricle With Remote Ventricular Septal Defect. Garekar S; Bharati A; Chokhandre M; Mali S; Trivedi B; Changela VP; Solanki N; Gaikwad S; Agarwal V World J Pediatr Congenit Heart Surg; 2016 May; 7(3):344-50. PubMed ID: 27142402 [TBL] [Abstract][Full Text] [Related]
10. The role of three-dimensional printed cardiac models in the management of complex congenital heart diseases. Tiwari N; Ramamurthy HR; Kumar V; Kumar A; Dhanalakshmi B; Kumar G Med J Armed Forces India; 2021 Jul; 77(3):322-330. PubMed ID: 34305286 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional printing in congenital heart disease: A systematic review. Lau I; Sun Z J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808 [TBL] [Abstract][Full Text] [Related]
12. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional printed models as an effective tool for the management of complex congenital heart disease. Capellini K; Ait-Ali L; Pak V; Cantinotti M; Murzi M; Vignali E; Fanni BM; Clemente A; Celi S; Gasparotti E Front Bioeng Biotechnol; 2024; 12():1369514. PubMed ID: 39157439 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use. Perens G; Chyu J; McHenry K; Yoshida T; Finn JP World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Cardiac Models as an Adjunct to Traditional Teaching of Anatomy in Congenital Heart Disease-A Randomised Controlled Study. Tarca A; Woo N; Bain S; Crouchley D; McNulty E; Yim D Heart Lung Circ; 2023 Dec; 32(12):1443-1450. PubMed ID: 38007317 [TBL] [Abstract][Full Text] [Related]
16. Impact of 3D Printouts in Optimizing Surgical Results for Complex Congenital Heart Disease. Han F; Co-Vu J; Lopez-Colon D; Forder J; Bleiweis M; Reyes K; DeGroff C; Chandran A World J Pediatr Congenit Heart Surg; 2019 Sep; 10(5):533-538. PubMed ID: 31496399 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios. Talanki VR; Peng Q; Shamir SB; Baete SH; Duong TQ; Wake N J Magn Reson Imaging; 2022 Apr; 55(4):1060-1081. PubMed ID: 34046959 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional printing and virtual reconstruction in surgical planning of double-outlet right ventricle repair. Ponchant K; Nguyen DA; Prsa M; Beghetti M; Sologashvili T; Vallée JP JTCVS Tech; 2023 Feb; 17():138-150. PubMed ID: 36820361 [TBL] [Abstract][Full Text] [Related]
20. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. Lau IWW; Liu D; Xu L; Fan Z; Sun Z PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]