These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28567179)

  • 41. Nanotechnology for catalysis and solar energy conversion.
    Banin U; Waiskopf N; Hammarström L; Boschloo G; Freitag M; Johansson EMJ; Sá J; Tian H; Johnston MB; Herz LM; Milot RL; Kanatzidis MG; Ke W; Spanopoulos I; Kohlstedt KL; Schatz GC; Lewis N; Meyer T; Nozik AJ; Beard MC; Armstrong F; Megarity CF; Schmuttenmaer CA; Batista VS; Brudvig GW
    Nanotechnology; 2021 Jan; 32(4):042003. PubMed ID: 33155576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers.
    Yi J; Duan Y; Liu C; Gao S; Han X; An L
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 µm and J
    Bi Y; Pradhan S; Gupta S; Akgul MZ; Stavrinadis A; Konstantatos G
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase-Transfer Exchange Lead Chalcogenide Colloidal Quantum Dots: Ink Preparation, Film Assembly, and Solar Cell Construction.
    Yuan M; Wang X; Chen X; He J; Li K; Song B; Hu H; Gao L; Lan X; Chen C; Tang J
    Small; 2022 Jan; 18(2):e2102340. PubMed ID: 34561947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review on solar cells from Si-single crystals to porous materials and quantum dots.
    Badawy WA
    J Adv Res; 2015 Mar; 6(2):123-32. PubMed ID: 25750746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction.
    Crisp RW; Pach GF; Kurley JM; France RM; Reese MO; Nanayakkara SU; MacLeod BA; Talapin DV; Beard MC; Luther JM
    Nano Lett; 2017 Feb; 17(2):1020-1027. PubMed ID: 28068765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly Efficient Inverted Structural Quantum Dot Solar Cells.
    Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13.
    Xue J; Wang R; Chen L; Nuryyeva S; Han TH; Huang T; Tan S; Zhu J; Wang M; Wang ZK; Zhang C; Lee JW; Yang Y
    Adv Mater; 2019 Sep; 31(37):e1900111. PubMed ID: 31343086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells.
    Li M; Chen S; Zhao X; Xiong K; Wang B; Shah UA; Gao L; Lan X; Zhang J; Hsu HY; Tang J; Song H
    Small; 2022 Jan; 18(1):e2105495. PubMed ID: 34859592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics.
    Choi MJ; García de Arquer FP; Proppe AH; Seifitokaldani A; Choi J; Kim J; Baek SW; Liu M; Sun B; Biondi M; Scheffel B; Walters G; Nam DH; Jo JW; Ouellette O; Voznyy O; Hoogland S; Kelley SO; Jung YS; Sargent EH
    Nat Commun; 2020 Jan; 11(1):103. PubMed ID: 31900394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monolithic Two-Terminal Tandem Solar Cells Using Sb
    Kern S; Yi G; Büttner P; Scheler F; Tran MH; Korenko S; Dehm KE; Kundrata I; Zahl A; Albrecht S; Bachmann J; Crisp RW
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13903-13913. PubMed ID: 38459939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics.
    Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; García de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics.
    He J; Ge Y; Wang Y; Yuan M; Xia H; Zhang X; Chen X; Wang X; Zhou X; Li K; Chen C; Tang J
    Front Optoelectron; 2023 Oct; 16(1):28. PubMed ID: 37889375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells.
    Wu R; Yang Y; Li M; Qin D; Zhang Y; Hou L
    Nanomaterials (Basel); 2017 Jul; 7(8):. PubMed ID: 28788077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscience and nanostructures for photovoltaics and solar fuels.
    Nozik AJ
    Nano Lett; 2010 Aug; 10(8):2735-41. PubMed ID: 20597472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions.
    Chang LY; Lunt RR; Brown PR; Bulović V; Bawendi MG
    Nano Lett; 2013 Mar; 13(3):994-9. PubMed ID: 23406331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mixed Lead Halide Passivation of Quantum Dots.
    Fan JZ; Andersen NT; Biondi M; Todorović P; Sun B; Ouellette O; Abed J; Sagar LK; Choi MJ; Hoogland S; de Arquer FPG; Sargent EH
    Adv Mater; 2019 Nov; 31(48):e1904304. PubMed ID: 31600007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.
    Biondi M; Choi MJ; Ouellette O; Baek SW; Todorović P; Sun B; Lee S; Wei M; Li P; Kirmani AR; Sagar LK; Richter LJ; Hoogland S; Lu ZH; García de Arquer FP; Sargent EH
    Adv Mater; 2020 Apr; 32(17):e1906199. PubMed ID: 32196136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.