These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28567447)

  • 1. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus
    Kumar R; Verma H; Haider S; Bajaj A; Sood U; Ponnusamy K; Nagar S; Shakarad MN; Negi RK; Singh Y; Khurana JP; Gilbert JA; Lal R
    mSystems; 2017; 2(3):. PubMed ID: 28567447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation.
    Gan HM; Hudson AO; Rahman AY; Chan KG; Savka MA
    BMC Genomics; 2013 Jun; 14():431. PubMed ID: 23809012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genomics of Degradative
    Wang J; Wang C; Li J; Bai P; Li Q; Shen M; Li R; Li T; Zhao J
    Front Microbiol; 2018; 9():2238. PubMed ID: 30319567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Analysis of Family UBA6911 (Group 18
    Yadav A; Borrelli JC; Elshahed MS; Youssef NH
    Appl Environ Microbiol; 2021 Aug; 87(17):e0094721. PubMed ID: 34160232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, P.R. China.
    Bazhanov DP; Li C; Li H; Li J; Zhang X; Chen X; Yang H
    BMC Microbiol; 2016 Nov; 16(1):265. PubMed ID: 27821056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil.
    Gupta SK; Lal D; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):156-61. PubMed ID: 19126741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440.
    Dos Santos VA; Heim S; Moore ER; Strätz M; Timmis KN
    Environ Microbiol; 2004 Dec; 6(12):1264-86. PubMed ID: 15560824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reevaluating the Salty Divide: Phylogenetic Specificity of Transitions between Marine and Freshwater Systems.
    Paver SF; Muratore D; Newton RJ; Coleman ML
    mSystems; 2018; 3(6):. PubMed ID: 30443603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern.
    D'Argenio V; Notomista E; Petrillo M; Cantiello P; Cafaro V; Izzo V; Naso B; Cozzuto L; Durante L; Troncone L; Paolella G; Salvatore F; Di Donato A
    BMC Genomics; 2014 May; 15(1):384. PubMed ID: 24884518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.
    Romano S; Fernàndez-Guerra A; Reen FJ; Glöckner FO; Crowley SP; O'Sullivan O; Cotter PD; Adams C; Dobson AD; O'Gara F
    Front Microbiol; 2016; 7():387. PubMed ID: 27065959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome sequence of Novosphingobium pentaromativorans US6-1(T).
    Choi DH; Kwon YM; Kwon KK; Kim SJ
    Stand Genomic Sci; 2015; 10():107. PubMed ID: 26594308
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Dereeper A; Allouch N; Guerlais V; Garnier M; Ma L; De Jonckheere JF; Joseph SJ; Ali IKM; Talarmin A; Marcelino I
    Front Microbiol; 2022; 13():1056418. PubMed ID: 36817109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments.
    Suzuki S; Hiraishi A
    J Gen Appl Microbiol; 2007 Aug; 53(4):221-8. PubMed ID: 17878661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in
    Sorouri B; Rodriguez CI; Gaut BS; Allison SD
    Front Microbiol; 2023; 14():1146165. PubMed ID: 37138640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chemotaxis and characteristics of chemotactic genes in Novosphingobium strains].
    Liao X; Yang L; Buce H; Zhou M; Zheng T; Tian Y
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):399-410. PubMed ID: 29756438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli.
    Touchon M; Perrin A; de Sousa JAM; Vangchhia B; Burn S; O'Brien CL; Denamur E; Gordon D; Rocha EP
    PLoS Genet; 2020 Jun; 16(6):e1008866. PubMed ID: 32530914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Functional Genome Analysis Reveals the Habitat Adaptation and Biocontrol Characteristics of Plant Growth-Promoting Bacteria in NCBI Databases.
    Wang Z; Lu K; Liu X; Zhu Y; Liu C
    Microbiol Spectr; 2023 Jun; 11(3):e0500722. PubMed ID: 37098923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity.
    Maistrenko OM; Mende DR; Luetge M; Hildebrand F; Schmidt TSB; Li SS; Rodrigues JFM; von Mering C; Pedro Coelho L; Huerta-Cepas J; Sunagawa S; Bork P
    ISME J; 2020 May; 14(5):1247-1259. PubMed ID: 32047279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.
    Aylward FO; McDonald BR; Adams SM; Valenzuela A; Schmidt RA; Goodwin LA; Woyke T; Currie CR; Suen G; Poulsen M
    Appl Environ Microbiol; 2013 Jun; 79(12):3724-33. PubMed ID: 23563954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Functional Constraints Cause Strain-Level Endemism in
    Sangwan N; Zarraonaindia I; Hampton-Marcell JT; Ssegane H; Eshoo TW; Rijal G; Negri MC; Gilbert JA
    mSystems; 2016; 1(3):. PubMed ID: 27822527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.