BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28567629)

  • 1. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone.
    Ozdal M; Gurkok S; Ozdal OG
    3 Biotech; 2017 Jun; 7(2):117. PubMed ID: 28567629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.
    Sun H; Wang L; Nie H; Diwu Z; Nie M; Zhang B
    Biotechnol Prog; 2021 Jul; 37(4):e3155. PubMed ID: 33871921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z; He Q; Che C; Liu J; Yang G
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa.
    Pérez-Armendáriz B; Cal-Y-Mayor-Luna C; El-Kassis EG; Ortega-Martínez LD
    AMB Express; 2019 May; 9(1):61. PubMed ID: 31062183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal.
    Samykannu M; Achary A
    Appl Biochem Biotechnol; 2017 Sep; 183(1):70-90. PubMed ID: 28161866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.
    Zhao F; Mandlaa M; Hao J; Liang X; Shi R; Han S; Zhang Y
    Lett Appl Microbiol; 2014 Aug; 59(2):231-7. PubMed ID: 24738996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhamnolipid production by
    Gaur S; Gupta S; Jha PN; Jain A
    Environ Technol; 2023 Sep; ():1-14. PubMed ID: 37682050
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimization of rhamnolipid production from
    Sharma R; Singh J; Verma N
    3 Biotech; 2018 Jan; 8(1):20. PubMed ID: 29276658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815.
    Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM
    Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Nutrient Requirements and Culture Conditions for the Production of Rhamnolipid from Pseudomonas aeruginosa (MTCC 7815) using Mesua ferrea Seed Oil.
    Singh SP; Bharali P; Konwar BK
    Indian J Microbiol; 2013 Dec; 53(4):467-76. PubMed ID: 24426152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site.
    Wu JY; Yeh KL; Lu WB; Lin CL; Chang JS
    Bioresour Technol; 2008 Mar; 99(5):1157-64. PubMed ID: 17434729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications.
    Zhao F; Zheng M; Xu X
    Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.
    Patowary R; Patowary K; Kalita MC; Deka S
    Appl Biochem Biotechnol; 2016 Oct; 180(3):383-399. PubMed ID: 27142272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.
    Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM
    Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.