These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28567629)

  • 41. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.
    Thaniyavarn J; Chongchin A; Wanitsuksombut N; Thaniyavarn S; Pinphanichakarn P; Leepipatpiboon N; Morikawa M; Kanaya S
    J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Response Surface Methodology for Optimizing the Production of Biosurfactant by
    Almeida DG; Soares da Silva RC; Luna JM; Rufino RD; Santos VA; Sarubbo LA
    Front Microbiol; 2017; 8():157. PubMed ID: 28223971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil.
    de Lima CJ; Ribeiro EJ; Sérvulo EF; Resende MM; Cardoso VL
    Appl Biochem Biotechnol; 2009 Jan; 152(1):156-68. PubMed ID: 18427741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874.
    Müller MM; Hörmann B; Kugel M; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):585-92. PubMed ID: 20890599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic
    Shi S; Teng Z; Liu J; Li T
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods.
    de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N
    Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.
    Varjani SJ; Upasani VN
    Bioresour Technol; 2016 Dec; 221():510-516. PubMed ID: 27677153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High titer heterologous rhamnolipid production.
    Beuker J; Barth T; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Dec; 6(1):124. PubMed ID: 27957724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosurfactant production in sugar beet molasses by some Pseudomonas spp.
    Onbasli D; Aslim B
    J Environ Biol; 2009 Jan; 30(1):161-3. PubMed ID: 20112880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.
    Soares Dos Santos A; Pereira N; Freire DM
    PeerJ; 2016; 4():e2078. PubMed ID: 27257553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of Process Parameters of Rhamnolipid Treatment of Oily Sludge Based on Response Surface Methodology.
    Liu C; Xu Q; Hu X; Zhang S; Zhang P; You Y
    ACS Omega; 2020 Nov; 5(45):29333-29341. PubMed ID: 33225164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design.
    Hassan M; Essam T; Yassin AS; Salama A
    Int J Biol Macromol; 2016 Jan; 82():573-9. PubMed ID: 26432373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.