These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 28567664)
1. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Hackauf B; Haffke S; Fromme FJ; Roux SR; Kusterer B; Musmann D; Kilian A; Miedaner T Theor Appl Genet; 2017 Sep; 130(9):1801-1817. PubMed ID: 28567664 [TBL] [Abstract][Full Text] [Related]
2. Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). Miedaner T; Hübner M; Korzun V; Schmiedchen B; Bauer E; Haseneyer G; Wilde P; Reif JC BMC Genomics; 2012 Dec; 13():706. PubMed ID: 23244545 [TBL] [Abstract][Full Text] [Related]
3. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye ( Siekmann D; Jansen G; Zaar A; Kilian A; Fromme FJ; Hackauf B Front Plant Sci; 2021; 12():718081. PubMed ID: 34777409 [TBL] [Abstract][Full Text] [Related]
4. Putative candidate genes responsible for leaf rolling in rye (Secale cereale L.). Myśków B; Góralska M; Lenarczyk N; Czyczyło-Mysza I; Stojałowski S BMC Genet; 2018 Aug; 19(1):57. PubMed ID: 30092756 [TBL] [Abstract][Full Text] [Related]
5. Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.). Myśków B; Stojałowski S J Appl Genet; 2016 Feb; 57(1):45-50. PubMed ID: 26069166 [TBL] [Abstract][Full Text] [Related]
6. Construction of a high-density genetic map and mapping of a spike length locus for rye. Che Y; Yang Y; Yang Y; Wei L; Guo J; Yang X; Li X; Liu W; Li L PLoS One; 2023; 18(10):e0293604. PubMed ID: 37903124 [TBL] [Abstract][Full Text] [Related]
7. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Marcotuli I; Gadaleta A; Mangini G; Signorile AM; Zacheo SA; Blanco A; Simeone R; Colasuonno P Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635630 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of genetic architectures for nine developmental traits of rye. Masojć P; Milczarski P; Kruszona P J Appl Genet; 2017 Aug; 58(3):297-305. PubMed ID: 28488059 [TBL] [Abstract][Full Text] [Related]
9. Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor. Falke KC; Susić Z; Wilde P; Wortmann H; Möhring J; Piepho HP; Geiger HH; Miedaner T Theor Appl Genet; 2009 May; 118(7):1225-38. PubMed ID: 19238350 [TBL] [Abstract][Full Text] [Related]
10. Selective sweeps identification in distinct groups of cultivated rye (Secale cereale L.) germplasm provides potential candidate genes for crop improvement. Hawliczek A; Borzęcka E; Tofil K; Alachiotis N; Bolibok L; Gawroński P; Siekmann D; Hackauf B; Dušinský R; Švec M; Bolibok-Brągoszewska H BMC Plant Biol; 2023 Jun; 23(1):323. PubMed ID: 37328739 [TBL] [Abstract][Full Text] [Related]
11. A high density consensus map of rye (Secale cereale L.) based on DArT markers. Milczarski P; Bolibok-Brągoszewska H; Myśków B; Stojałowski S; Heller-Uszyńska K; Góralska M; Brągoszewski P; Uszyński G; Kilian A; Rakoczy-Trojanowska M PLoS One; 2011; 6(12):e28495. PubMed ID: 22163026 [TBL] [Abstract][Full Text] [Related]
12. DArT markers for the rye genome - genetic diversity and mapping. Bolibok-Bragoszewska H; Heller-Uszyńska K; Wenzl P; Uszyński G; Kilian A; Rakoczy-Trojanowska M BMC Genomics; 2009 Dec; 10():578. PubMed ID: 19958552 [TBL] [Abstract][Full Text] [Related]
13. Exploring new alleles for frost tolerance in winter rye. Erath W; Bauer E; Fowler DB; Gordillo A; Korzun V; Ponomareva M; Schmidt M; Schmiedchen B; Wilde P; Schön CC Theor Appl Genet; 2017 Oct; 130(10):2151-2164. PubMed ID: 28730463 [TBL] [Abstract][Full Text] [Related]
14. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599 [TBL] [Abstract][Full Text] [Related]
15. Hybrid rye performance under natural drought stress in Europe. Hübner M; Wilde P; Schmiedchen B; Dopierala P; Gowda M; Reif JC; Miedaner T Theor Appl Genet; 2013 Feb; 126(2):475-82. PubMed ID: 23090142 [TBL] [Abstract][Full Text] [Related]
16. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Yu K; Liu D; Wu W; Yang W; Sun J; Li X; Zhan K; Cui D; Ling H; Liu C; Zhang A Theor Appl Genet; 2017 Jan; 130(1):53-70. PubMed ID: 27659843 [TBL] [Abstract][Full Text] [Related]
17. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Hackauf B; Rudd S; van der Voort JR; Miedaner T; Wehling P Theor Appl Genet; 2009 Jan; 118(2):371-84. PubMed ID: 18953524 [TBL] [Abstract][Full Text] [Related]
18. Genomic structural equation modelling provides a whole-system approach for the future crop breeding. He T; Angessa TT; Hill CB; Zhang XQ; Chen K; Luo H; Wang Y; Karunarathne SD; Zhou G; Tan C; Wang P; Westcott S; Li C Theor Appl Genet; 2021 Sep; 134(9):2875-2889. PubMed ID: 34059938 [TBL] [Abstract][Full Text] [Related]
20. Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars. Bai XF; Luo LJ; Yan WH; Kovi MR; Xing YZ J Genet; 2011 Aug; 90(2):209-15. PubMed ID: 21869469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]