These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 28568078)

  • 1. PRE-ADAPTATION OF YORKSHIRE FOG, HOLCUS LANATUS L. (POACEAE) TO ARSENATE TOLERANCE.
    Meharg AA; Cumbes QJ; Macnair MR
    Evolution; 1993 Feb; 47(1):313-316. PubMed ID: 28568078
    [No Abstract]   [Full Text] [Related]  

  • 2. EVIDENCE THAT ARSENIC TOLERANCE IN HOLCUS LANATUS L. IS CAUSED BY AN ALTERED PHOSPHATE UPTAKE SYSTEM.
    Macnair MR; Cumbes Q
    New Phytol; 1987 Oct; 107(2):387-394. PubMed ID: 33873845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus.
    Hartley-Whitaker J; Ainsworth G; Vooijs R; Ten Bookum W; Schat H; Meharg AA
    Plant Physiol; 2001 May; 126(1):299-306. PubMed ID: 11351093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.
    Chen ZC; Yokosho K; Kashino M; Zhao FJ; Yamaji N; Ma JF
    Plant J; 2013 Oct; 76(1):10-23. PubMed ID: 23773148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L.: Adaptation of the arsenate uptake system.
    Meharg AA; Macnair MR
    New Phytol; 1991 Oct; 119(2):291-297. PubMed ID: 33874130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus.
    Bleeker PM; Hakvoort HW; Bliek M; Souer E; Schat H
    Plant J; 2006 Mar; 45(6):917-29. PubMed ID: 16507083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms.
    Jones HE; West HM; Chamberlain PM; Parekh NR; Beresford NA; Crout NM
    J Environ Radioact; 2004; 74(1-3):57-71. PubMed ID: 15063536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus).
    Lewińska K; Karczewska A
    Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica.
    Raab A; Feldmann J; Meharg AA
    Plant Physiol; 2004 Mar; 134(3):1113-22. PubMed ID: 15001701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills.
    Karczewska A; Lewińska K; Gałka B
    J Hazard Mater; 2013 Nov; 262():1014-21. PubMed ID: 23044199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome numbers in Holcus mollis.
    BEDDOWS AR; JONES K
    Nature; 1953 May; 171(4360):938-9. PubMed ID: 13054784
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field.
    Walter J; Kreyling J; Singh BK; Jentsch A
    Plant Biol (Stuttg); 2016 Mar; 18(2):262-70. PubMed ID: 26284575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Correlation of allergy positivity for the tests of gramineas between tribes and species].
    Riggioni O; Montiel M; Fonseca J; Jaramillo O; Carvajal E; Rosencwaig P; Colmenares A
    Rev Biol Trop; 1994 Apr; 42 Suppl 1():77-83, 20. PubMed ID: 7708972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression of grass pollen-induced lymphocyte transformation by serum from hyposensitized patients.
    Romagnani S; Biliotti G; Ricci M
    Clin Exp Immunol; 1975 Jan; 19(1):83-91. PubMed ID: 1204240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple mechanisms enable invasive species to suppress native species.
    Bennett AE; Thomsen M; Strauss SY
    Am J Bot; 2011 Jul; 98(7):1086-94. PubMed ID: 21730335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agricultural effects on yield and nutritive value of grassland under a limited fertilisation rate on sandy soils in Flanders.
    Bommelé L; Reheul D; Nevens F
    Commun Agric Appl Biol Sci; 2003; 68(1):49-60. PubMed ID: 14696237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test.
    Sinnett DE; Lawrence VK; Hutchings TR; Hodson ME
    Environ Toxicol Chem; 2011 Jan; 30(1):124-31. PubMed ID: 20853450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils.
    Patra AK; Abbadie L; Clays-Josserand A; Degrange V; Grayston SJ; Guillaumaud N; Loiseau P; Louault F; Mahmood S; Nazaret S; Philippot L; Poly F; Prosser JI; Le Roux X
    Environ Microbiol; 2006 Jun; 8(6):1005-16. PubMed ID: 16689721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMPARISON OF VARIANCE COMPONENTS BETWEEN TWO POPULATIONS OF HOLCUS LANATUS: A REANALYSIS.
    Shaw RG; Billington HL
    Evolution; 1991 Aug; 45(5):1287-1289. PubMed ID: 28564185
    [No Abstract]   [Full Text] [Related]  

  • 20. In situ ATR-FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite.
    Carabante I; Grahn M; Holmgren A; Hedlund J
    J Colloid Interface Sci; 2010 Nov; 351(2):523-31. PubMed ID: 20804983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.