These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28568084)
21. An experimental evolutionary study on adaptation to temporally fluctuating pH in Escherichia coli. Hughes BS; Cullum AJ; Bennett AF Physiol Biochem Zool; 2007; 80(4):406-21. PubMed ID: 17508336 [TBL] [Abstract][Full Text] [Related]
22. Selection for upper thermal tolerance in rainbow trout (Oncorhynchus mykiss Walbaum). Chen Z; Snow M; Lawrence CS; Church AR; Narum SR; Devlin RH; Farrell AP J Exp Biol; 2015 Mar; 218(Pt 5):803-12. PubMed ID: 25573825 [TBL] [Abstract][Full Text] [Related]
23. Evolutionary adaptation to freeze-thaw-growth cycles in Escherichia coli. Sleight SC; Lenski RE Physiol Biochem Zool; 2007; 80(4):370-85. PubMed ID: 17508333 [TBL] [Abstract][Full Text] [Related]
24. Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature. Hong BC; Shurin JB Ecology; 2015 Sep; 96(9):2348-59. PubMed ID: 26594693 [TBL] [Abstract][Full Text] [Related]
25. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. Kern P; Cramp RL; Franklin CE J Exp Biol; 2014 Apr; 217(Pt 8):1246-52. PubMed ID: 24363412 [TBL] [Abstract][Full Text] [Related]
26. Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming. Guyot S; Pottier L; Hartmann A; Ragon M; Hauck Tiburski J; Molin P; Ferret E; Gervais P Microbiologyopen; 2014 Feb; 3(1):52-63. PubMed ID: 24357618 [TBL] [Abstract][Full Text] [Related]
27. The thermal niche of Neotropical nectar-feeding bats: Its evolution and application to predict responses to global warming. Ortega-García S; Guevara L; Arroyo-Cabrales J; Lindig-Cisneros R; Martínez-Meyer E; Vega E; Schondube JE Ecol Evol; 2017 Sep; 7(17):6691-6701. PubMed ID: 28904751 [TBL] [Abstract][Full Text] [Related]
28. LONG-TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI. III. VARIATION AMONG REPLICATE POPULATIONS IN CORRELATED RESPONSES TO NOVEL ENVIRONMENTS. Travisano M; Vasi F; Lenski RE Evolution; 1995 Feb; 49(1):189-200. PubMed ID: 28593661 [TBL] [Abstract][Full Text] [Related]
29. Thermal ecology of the fiddler crab Uca panacea: Thermal constraints and organismal responses. Darnell MZ; Nicholson HS; Munguia P J Therm Biol; 2015 Aug; 52():157-65. PubMed ID: 26267510 [TBL] [Abstract][Full Text] [Related]
30. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
31. Effects of incubation temperature on the upper thermal tolerance of the imperiled longfin smelt ( Yanagitsuru YR; Mauduit F; Lundquist AJ; Lewis LS; Hobbs JA; Hung TC; Connon RE; Fangue NA Conserv Physiol; 2024; 12(1):coae004. PubMed ID: 38343722 [TBL] [Abstract][Full Text] [Related]
32. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms. Killeen J; Gougat-Barbera C; Krenek S; Kaltz O Mol Ecol; 2017 Apr; 26(7):1734-1746. PubMed ID: 28222239 [TBL] [Abstract][Full Text] [Related]
33. Populations of western North American monkeyflowers accrue niche breadth primarily via genotypic divergence in environmental optima. Coughlin AO; Wooliver R; Sheth SN Ecol Evol; 2022 Oct; 12(10):e9434. PubMed ID: 36284518 [TBL] [Abstract][Full Text] [Related]
34. Long-term experimental evolution in Escherichia coli. X. Quantifying the fundamental and realized niche. Cooper VS BMC Evol Biol; 2002 Aug; 2():12. PubMed ID: 12199912 [TBL] [Abstract][Full Text] [Related]
35. Niche evolution and thermal adaptation in the temperate species Drosophila americana. Sillero N; Reis M; Vieira CP; Vieira J; Morales-Hojas R J Evol Biol; 2014 Aug; 27(8):1549-61. PubMed ID: 24835376 [TBL] [Abstract][Full Text] [Related]
36. Changes in gene expression following high-temperature adaptation in experimentally evolved populations of E. coli. Riehle MM; Bennett AF; Long AD Physiol Biochem Zool; 2005; 78(3):299-315. PubMed ID: 15887077 [TBL] [Abstract][Full Text] [Related]
37. Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Riehle MM; Bennett AF; Lenski RE; Long AD Physiol Genomics; 2003 Jun; 14(1):47-58. PubMed ID: 12672900 [TBL] [Abstract][Full Text] [Related]
38. Combined effects of temperature and macronutrient balance on life-history traits in Drosophila melanogaster: implications for life-history trade-offs and fundamental niche. Kim KE; Jang T; Lee KP Oecologia; 2020 Jun; 193(2):299-309. PubMed ID: 32418116 [TBL] [Abstract][Full Text] [Related]
39. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream. Peng J; Cao ZD; Fu SJ Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():32-40. PubMed ID: 25026540 [TBL] [Abstract][Full Text] [Related]
40. Evidence of local adaptation in the demographic response of American ginseng to interannual temperature variation. Souther S; McGraw JB Conserv Biol; 2011 Oct; 25(5):922-31. PubMed ID: 21676029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]