These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2856811)

  • 21. Non-opioid actions of opioid peptides.
    Wollemann M; Benyhe S
    Life Sci; 2004 Jun; 75(3):257-70. PubMed ID: 15135648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors.
    Barnes MJ; Lapanowski K; Conley A; Rafols JA; Jen KL; Dunbar JC
    Brain Res Bull; 2003 Sep; 61(5):511-9. PubMed ID: 13679250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of CNS opioid on autonomic nervous and cardiovascular responses in diet-induced obese rats.
    Barnes MJ; Jen KL; Dunbar JC
    Peptides; 2004 Jan; 25(1):71-9. PubMed ID: 15003358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cloned mu, delta and kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores.
    Mansour A; Hoversten MT; Taylor LP; Watson SJ; Akil H
    Brain Res; 1995 Nov; 700(1-2):89-98. PubMed ID: 8624732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of kappa and delta opioid agonists on activity and thermosensitivity of rat hypothalamic neurons.
    Yakimova KS; Sann H; Pierau FK
    Brain Res; 1998 Mar; 786(1-2):133-42. PubMed ID: 9554984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides.
    Iyengar S; Kim HS; Wood PL
    Brain Res; 1987 Dec; 435(1-2):220-6. PubMed ID: 2892574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice.
    Ikeda H; Ardianto C; Yonemochi N; Yang L; Ohashi T; Ikegami M; Nagase H; Kamei J
    Neuroscience; 2015 Dec; 311():9-21. PubMed ID: 26454026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Discovery, anatomical mapping and biosynthesis of various families of endogenous opioid peptides].
    Patey G; Rossier J
    Ann Endocrinol (Paris); 1986; 47(2):71-87. PubMed ID: 2879507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central opioid modulation of fetal cardiovascular function: role of mu- and delta-receptors.
    Szeto HH; Zhu YS; Cai LQ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1453-8. PubMed ID: 2163223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors.
    Raynor K; Kong H; Chen Y; Yasuda K; Yu L; Bell GI; Reisine T
    Mol Pharmacol; 1994 Feb; 45(2):330-4. PubMed ID: 8114680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The role of mu- and delta-opiate receptors in the realization of the autonomic effects of opioid peptides].
    Martynova ER; Medvedev OS
    Biull Eksp Biol Med; 1986 Jan; 101(1):60-3. PubMed ID: 3002521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proenkephalin and opioid mu-receptor mRNA expression in ovine hypothalamus across the estrous cycle.
    Walsh JP; Rao A; Thompson RC; Clarke IJ
    Neuroendocrinology; 2001 Jan; 73(1):26-36. PubMed ID: 11174014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opioid peptides and epileptogenesis in the limbic system: cellular mechanisms.
    Siggins GR; Henriksen SJ; Chavkin C; Gruol D
    Adv Neurol; 1986; 44():501-12. PubMed ID: 2939697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of endogenous opioid peptides in modulation of nocifensive response to formalin.
    Wu HE; Hung KC; Mizoguchi H; Nagase H; Tseng LF
    J Pharmacol Exp Ther; 2002 Feb; 300(2):647-54. PubMed ID: 11805228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Some aspects of physiology and pharmacology of endogenous opioid peptides.
    Przewłocki R
    Pol J Pharmacol Pharm; 1984; 36(2-3):137-58. PubMed ID: 6147828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a differential postnatal development of proenkephalin B (= prodynorphin)-derived opioid peptides in the rat hypothalamus.
    Seizinger BR; Grimm C; Herz A
    Endocrinology; 1984 Sep; 115(3):926-35. PubMed ID: 6547667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of β-endorphin.
    Tamura Y; Shintani M; Inoue H; Monden M; Shiomi H
    Brain Res; 2012 Apr; 1448():63-70. PubMed ID: 22381895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Wellcome Foundation lecture, 1982. Opioid peptides and their receptors.
    Kosterlitz HW
    Proc R Soc Lond B Biol Sci; 1985 Jul; 225(1238):27-40. PubMed ID: 2863824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gonadal steroid hormones and hypothalamic opioid circuitry.
    Hammer RP; Zhou L; Cheung S
    Horm Behav; 1994 Dec; 28(4):431-7. PubMed ID: 7729811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of spinal mu(1)-opioid receptors and dynorphin B to the antinociception induced by Tyr-d-Arg-Phe-Sar.
    Mizoguchi H; Ito K; Watanabe H; Watanabe C; Katsuyama S; Fujimura T; Sakurada T; Sakurada S
    Peptides; 2006 Nov; 27(11):2786-93. PubMed ID: 16919848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.