BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28568415)

  • 21. Morph-dependent fatty acid oxidation in a wing-polymorphic cricket: implications for the trade-off between dispersal and reproduction.
    Zera AJ; Zhao Z
    J Insect Physiol; 2003 Oct; 49(10):933-43. PubMed ID: 14511826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morph-associated JH titer diel rhythm in Gryllus firmus: Experimental verification of its circadian basis and cycle characterization in artificially selected lines raised in the field.
    Zera AJ; Zhao Z
    J Insect Physiol; 2009 May; 55(5):450-8. PubMed ID: 19100744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymological and radiotracer studies of lipid metabolism in the flight-capable and flightless morphs of the wing-polymorphic cricket, Gryllus firmus.
    Zhao Z; Zera AJ
    J Insect Physiol; 2001 Nov; 47(11):1337-1347. PubMed ID: 12770186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Male sand crickets trade-off flight capability for reproductive potential.
    Saglam IK; Roff DA; Fairbairn DJ
    J Evol Biol; 2008 Jul; 21(4):997-1004. PubMed ID: 18489565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of a juvenile hormone analogue on lipid metabolism in a wing-polymorphic cricket: implications for the endocrine-biochemical bases of life-history trade-offs.
    Zera AJ; Zhao Z
    Physiol Biochem Zool; 2004; 77(2):255-66. PubMed ID: 15095245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient absorption and utilization by wing and flight muscle morphs of the cricket Gryllus firmus: implications for the trade-off between flight capability and early reproduction.
    Zera AJ; Brink T
    J Insect Physiol; 2000 Aug; 46(8):1207-1218. PubMed ID: 10818248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fecundity in relation to wing-morph of three closely related species of the melanocephalus group of the genus Calathus (Coleoptera: Carabidae).
    Aukema B
    Oecologia; 1991 Jun; 87(1):118-126. PubMed ID: 28313361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THE EVOLUTION OF WING DIMORPHISM IN INSECTS.
    Roff DA
    Evolution; 1986 Sep; 40(5):1009-1020. PubMed ID: 28556224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical basis of specialization for dispersal vs. reproduction in a wing-polymorphic cricket: morph-specific metabolism of amino acids.
    Zhao Z; Zera AJ
    J Insect Physiol; 2006 Jun; 52(6):646-58. PubMed ID: 16643945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cost of being able to fly: a study of wing polymorphism in two species of crickets.
    Roff DA
    Oecologia; 1984 Jul; 63(1):30-37. PubMed ID: 28311162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs.
    Zera AJ; Rankin MA
    Oecologia; 1989 Aug; 80(2):249-255. PubMed ID: 28313115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GENETIC CORRELATIONS AMONG TRAITS DETERMINING MIGRATORY TENDENCY IN THE SAND CRICKET, GRYLLUS FIRMUS.
    Fairbairn DJ; Roff DA
    Evolution; 1990 Nov; 44(7):1787-1795. PubMed ID: 28567809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary Endocrinology of Hormonal Rhythms: Juvenile Hormone Titer Circadian Polymorphism in Gryllus firmus.
    Zera AJ
    Integr Comp Biol; 2016 Aug; 56(2):159-70. PubMed ID: 27252212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus.
    Nanoth Vellichirammal N; Zera AJ; Schilder RJ; Wehrkamp C; Riethoven JJ; Brisson JA
    PLoS One; 2014; 9(1):e82129. PubMed ID: 24416137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density-dependent sex-biased development of macroptery in a water strider.
    Han CS
    Ecol Evol; 2020 Sep; 10(17):9514-9521. PubMed ID: 32953079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hemolymph JH titer exhibits a large-amplitude, morph-dependent, diurnal cycle in the wing-polymorphic cricket, Gryllus firmus.
    Zhao Z; Zera AJ
    J Insect Physiol; 2004 Jan; 50(1):93-102. PubMed ID: 15037097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contingency of fitness: an analysis of food restriction on the macroptery-reproduction trade-off in crickets.
    Crnokrak P; Roff DA
    Anim Behav; 1998 Aug; 56(2):433-441. PubMed ID: 9787034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morph-specific life-history correlations in a wing-dimorphic water strider.
    Hyun H; Han CS
    J Evol Biol; 2021 Aug; 34(8):1340-1346. PubMed ID: 34109692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.
    Zera AJ; Zhao Z
    Evolution; 2003 Mar; 57(3):586-96. PubMed ID: 12703948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of trade-offs: testing predictions on response to selection and environmental variation.
    Roff DA; Mostowy S; Fairbairn DJ
    Evolution; 2002 Jan; 56(1):84-95. PubMed ID: 11913668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.