These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 28568841)
1. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841 [TBL] [Abstract][Full Text] [Related]
2. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739 [TBL] [Abstract][Full Text] [Related]
3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710 [TBL] [Abstract][Full Text] [Related]
4. Highly Permeable Graphene Oxide/Polyelectrolytes Hybrid Thin Films for Enhanced CO Heo J; Choi M; Chang J; Ji D; Kang SW; Hong J Sci Rep; 2017 Mar; 7(1):456. PubMed ID: 28352120 [TBL] [Abstract][Full Text] [Related]
5. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295 [TBL] [Abstract][Full Text] [Related]
6. The effects of formation and functionalization of graphene-based membranes on their gas and water vapor permeation properties. Smržová D; Slušná MŠ; Peter J; Beneš H; Tolasz J; Georgievski OP; Maříková M; Ecorchard P Heliyon; 2023 Nov; 9(11):e21417. PubMed ID: 37942160 [TBL] [Abstract][Full Text] [Related]
7. Single-layered fluorinated graphene nanopores for H Wang T; Liu L; Perez-Aguilar JM; Gu Z J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488 [TBL] [Abstract][Full Text] [Related]
8. Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers. Pierleoni D; Minelli M; Ligi S; Christian M; Funke S; Reineking N; Morandi V; Doghieri F; Palermo V ACS Appl Mater Interfaces; 2018 Apr; 10(13):11242-11250. PubMed ID: 29522309 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. Alen SK; Nam S; Dastgheib SA Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717532 [TBL] [Abstract][Full Text] [Related]
11. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Huang A; Liu Q; Wang N; Zhu Y; Caro J J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574 [TBL] [Abstract][Full Text] [Related]
12. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance. Schlichting KP; Poulikakos D ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790 [TBL] [Abstract][Full Text] [Related]
13. MIL-101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification. Cheng L; Yang H; Chen X; Liu G; Guo Y; Liu G; Jin W Chem Asian J; 2021 Oct; 16(20):3162-3169. PubMed ID: 34384002 [TBL] [Abstract][Full Text] [Related]
14. Ionic Liquid Selectively Facilitates CO Ying W; Cai J; Zhou K; Chen D; Ying Y; Guo Y; Kong X; Xu Z; Peng X ACS Nano; 2018 Jun; 12(6):5385-5393. PubMed ID: 29874039 [TBL] [Abstract][Full Text] [Related]
15. Cross-Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Guo H; Kong G; Yang G; Pang J; Kang Z; Feng S; Zhao L; Fan L; Zhu L; Vicente A; Peng P; Yan Z; Sun D; Mintova S Angew Chem Int Ed Engl; 2020 Apr; 59(15):6284-6288. PubMed ID: 31986232 [TBL] [Abstract][Full Text] [Related]
16. Nanoarchitectonics of carbon molecular sieve membranes with graphene oxide and polyimide for hydrogen purification. He W; Du J; Liu L; Sun Q; Song Z; Ma J; Cao D; Lim W; Hassan SU; Liu J RSC Adv; 2023 Mar; 13(15):10168-10181. PubMed ID: 37006361 [TBL] [Abstract][Full Text] [Related]
17. Effective Separation of CO Jin X; Foller T; Wen X; Ghasemian MB; Wang F; Zhang M; Bustamante H; Sahajwalla V; Kumar P; Kim H; Lee GH; Kalantar-Zadeh K; Joshi R Adv Mater; 2020 Apr; 32(17):e1907580. PubMed ID: 32181550 [TBL] [Abstract][Full Text] [Related]
18. Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Fan H; Mundstock A; Feldhoff A; Knebel A; Gu J; Meng H; Caro J J Am Chem Soc; 2018 Aug; 140(32):10094-10098. PubMed ID: 30021065 [TBL] [Abstract][Full Text] [Related]
19. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326 [TBL] [Abstract][Full Text] [Related]
20. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Wang X; Chi C; Tao J; Peng Y; Ying S; Qian Y; Dong J; Hu Z; Gu Y; Zhao D Chem Commun (Camb); 2016 Jun; 52(52):8087-90. PubMed ID: 27181340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]