BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 28568841)

  • 1. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Permeable Graphene Oxide/Polyelectrolytes Hybrid Thin Films for Enhanced CO
    Heo J; Choi M; Chang J; Ji D; Kang SW; Hong J
    Sci Rep; 2017 Mar; 7(1):456. PubMed ID: 28352120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of formation and functionalization of graphene-based membranes on their gas and water vapor permeation properties.
    Smržová D; Slušná MŠ; Peter J; Beneš H; Tolasz J; Georgievski OP; Maříková M; Ecorchard P
    Heliyon; 2023 Nov; 9(11):e21417. PubMed ID: 37942160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers.
    Pierleoni D; Minelli M; Ligi S; Christian M; Funke S; Reineking N; Morandi V; Doghieri F; Palermo V
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11242-11250. PubMed ID: 29522309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications.
    Alen SK; Nam S; Dastgheib SA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity.
    Huang A; Liu Q; Wang N; Zhu Y; Caro J
    J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIL-101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification.
    Cheng L; Yang H; Chen X; Liu G; Guo Y; Liu G; Jin W
    Chem Asian J; 2021 Oct; 16(20):3162-3169. PubMed ID: 34384002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic Liquid Selectively Facilitates CO
    Ying W; Cai J; Zhou K; Chen D; Ying Y; Guo Y; Kong X; Xu Z; Peng X
    ACS Nano; 2018 Jun; 12(6):5385-5393. PubMed ID: 29874039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation.
    Guo H; Kong G; Yang G; Pang J; Kang Z; Feng S; Zhao L; Fan L; Zhu L; Vicente A; Peng P; Yan Z; Sun D; Mintova S
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6284-6288. PubMed ID: 31986232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitectonics of carbon molecular sieve membranes with graphene oxide and polyimide for hydrogen purification.
    He W; Du J; Liu L; Sun Q; Song Z; Ma J; Cao D; Lim W; Hassan SU; Liu J
    RSC Adv; 2023 Mar; 13(15):10168-10181. PubMed ID: 37006361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Separation of CO
    Jin X; Foller T; Wen X; Ghasemian MB; Wang F; Zhang M; Bustamante H; Sahajwalla V; Kumar P; Kim H; Lee GH; Kalantar-Zadeh K; Joshi R
    Adv Mater; 2020 Apr; 32(17):e1907580. PubMed ID: 32181550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation.
    Fan H; Mundstock A; Feldhoff A; Knebel A; Gu J; Meng H; Caro J
    J Am Chem Soc; 2018 Aug; 140(32):10094-10098. PubMed ID: 30021065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.
    Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals.
    Wang X; Chi C; Tao J; Peng Y; Ying S; Qian Y; Dong J; Hu Z; Gu Y; Zhao D
    Chem Commun (Camb); 2016 Jun; 52(52):8087-90. PubMed ID: 27181340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.