These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28568928)

  • 21. Comparative phylogeography of three trematomid fishes reveals contrasting genetic structure patterns in benthic and pelagic species.
    Van de Putte AP; Janko K; Kasparova E; Maes GE; Rock J; Koubbi P; Volckaert FA; Choleva L; Fraser KP; Smykla J; Van Houdt JK; Marshall C
    Mar Genomics; 2012 Dec; 8():23-34. PubMed ID: 23199877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.
    Ellingson RA; Krug PJ
    Evolution; 2016 Jan; 70(1):18-37. PubMed ID: 26635309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine scale dispersal in Banggai Cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase.
    Vagelli A; Burford M; Bernardi G
    Mar Genomics; 2008; 1(3-4):129-34. PubMed ID: 21798164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antarctic, Sub-Antarctic and cold temperate echinoid database.
    Pierrat B; Saucède T; Festeau A; David B
    Zookeys; 2012; (204):47-52. PubMed ID: 22787419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DEVELOPMENTAL MODE AND SPECIES GEOGRAPHIC RANGE IN REGULAR SEA URCHINS (ECHINODERMATA: ECHINOIDEA).
    Emlet RB
    Evolution; 1995 Jun; 49(3):476-489. PubMed ID: 28565076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DEPENDENCE OF GENE FLOW ON GEOGRAPHIC DISTANCE IN TWO SOLITARY CORALS WITH DIFFERENT LARVAL DISPERSAL CAPABILITIES.
    Hellberg ME
    Evolution; 1996 Jun; 50(3):1167-1175. PubMed ID: 28565289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods.
    Baird HP; Miller KJ; Stark JS
    Mol Ecol; 2011 Aug; 20(16):3439-54. PubMed ID: 21733028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods.
    Laakmann S; Auel H; Kochzius M
    Mol Phylogenet Evol; 2012 Nov; 65(2):535-46. PubMed ID: 22842293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From trochophore to pilidium and back again - a larva's journey.
    Maslakova SA; Hiebert TC
    Int J Dev Biol; 2014; 58(6-8):585-91. PubMed ID: 25690972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae).
    Damerau M; Matschiner M; Salzburger W; Hanel R
    Mol Ecol; 2014 Feb; 23(2):284-99. PubMed ID: 24372945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproductive strategies of marine benthic invertebrates revisited: facultative feeding by planktotrophic larvae.
    McEdward LR
    Am Nat; 1997 Jul; 150(1):48-72. PubMed ID: 18811275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new case of poecilogony from South America and the implications of nurse eggs, capsule structure, and maternal brooding behavior on the development of different larval types.
    Oyarzun FX; Brante A
    Biol Bull; 2015 Apr; 228(2):85-97. PubMed ID: 25920712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Demographic Consequences of Larval Development Mode: Planktotrophy vs. Lecithotrophy in Streblospio Benedicti.
    Levin LA; Caswell H; DePatra KD; Creed EL
    Ecology; 1987 Dec; 68(6):1877-1886. PubMed ID: 29357181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordinated shifts to non-planktotrophic development in spatangoid echinoids during the Late Cretaceous.
    Cunningham JA; Jeffery Abt CH
    Biol Lett; 2009 Oct; 5(5):647-50. PubMed ID: 19515650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates.
    González-Wevar CA; Saucède T; Morley SA; Chown SL; Poulin E
    Mol Ecol; 2013 Oct; 22(20):5221-36. PubMed ID: 24102937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the origin of Antarctic marine benthic community structure.
    Thatje S; Hillenbrand CD; Larter R
    Trends Ecol Evol; 2005 Oct; 20(10):534-40. PubMed ID: 16701431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. East Weddell Sea echinoids from the JR275 expedition.
    Saucède T; Griffiths H; Moreau C; Jackson JA; Sands C; Downey R; Reed A; Mackenzie M; Geissler P; Linse K
    Zookeys; 2015; (504):1-10. PubMed ID: 26019674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EVOLUTIONARY LOSS OF LARVAL FEEDING: DEVELOPMENT, FORM AND FUNCTION IN A FACULTATIVELY FEEDING LARVA, BRISASTER LATIFRONS.
    Hart MW
    Evolution; 1996 Feb; 50(1):174-187. PubMed ID: 28568851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective feeding by the echinoid, Evechinus chloroticus, and the removal of plants from subtidal algal stands in Northern New Zealand.
    Schiel DR
    Oecologia; 1982 Sep; 54(3):379-388. PubMed ID: 28309962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.