These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28569139)

  • 1. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.
    Bernal-Vasquez AM; Gordillo A; Schmidt M; Piepho HP
    BMC Genet; 2017 May; 18(1):51. PubMed ID: 28569139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material.
    Galán RJ; Bernal-Vasquez AM; Jebsen C; Piepho HP; Thorwarth P; Steffan P; Gordillo A; Miedaner T
    Theor Appl Genet; 2021 May; 134(5):1409-1422. PubMed ID: 33630103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).
    Auinger HJ; Schönleben M; Lehermeier C; Schmidt M; Korzun V; Geiger HH; Piepho HP; Gordillo A; Wilde P; Bauer E; Schön CC
    Theor Appl Genet; 2016 Nov; 129(11):2043-2053. PubMed ID: 27480157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes.
    Schulthess AW; Wang Y; Miedaner T; Wilde P; Reif JC; Zhao Y
    Theor Appl Genet; 2016 Feb; 129(2):273-87. PubMed ID: 26561306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust estimation of heritability and predictive accuracy in plant breeding: evaluation using simulation and empirical data.
    Lourenço VM; Ogutu JO; Piepho HP
    BMC Genomics; 2020 Jan; 21(1):43. PubMed ID: 31937245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes.
    Guo J; Khan J; Pradhan S; Shahi D; Khan N; Avci M; Mcbreen J; Harrison S; Brown-Guedira G; Murphy JP; Johnson J; Mergoum M; Esten Mason R; Ibrahim AMH; Sutton R; Griffey C; Babar MA
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33126620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years.
    Wang Y; Mette MF; Miedaner T; Gottwald M; Wilde P; Reif JC; Zhao Y
    BMC Genomics; 2014 Jul; 15(1):556. PubMed ID: 24997166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment.
    Tadesse W; Gataa ZE; Rachdad FE; Baouchi AE; Kehel Z; Alemu A
    Mol Genet Genomics; 2023 Nov; 298(6):1515-1526. PubMed ID: 37851098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration and validation of predicted genomic breeding values in an advanced cycle maize population.
    Auinger HJ; Lehermeier C; Gianola D; Mayer M; Melchinger AE; da Silva S; Knaak C; Ouzunova M; Schön CC
    Theor Appl Genet; 2021 Sep; 134(9):3069-3081. PubMed ID: 34117908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of genotypic, hyperspectral, and phenotypic data to improve biomass yield prediction in hybrid rye.
    Galán RJ; Bernal-Vasquez AM; Jebsen C; Piepho HP; Thorwarth P; Steffan P; Gordillo A; Miedaner T
    Theor Appl Genet; 2020 Nov; 133(11):3001-3015. PubMed ID: 32681289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs.
    Michel S; Löschenberger F; Ametz C; Bürstmayr H
    Theor Appl Genet; 2021 May; 134(5):1575-1586. PubMed ID: 33638651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection.
    Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE
    Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding.
    Grenier C; Cao TV; Ospina Y; Quintero C; Châtel MH; Tohme J; Courtois B; Ahmadi N
    PLoS One; 2015; 10(8):e0136594. PubMed ID: 26313446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding.
    Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H
    Theor Appl Genet; 2019 Jun; 132(6):1745-1760. PubMed ID: 30810763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data.
    Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM
    Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of phenotypic data analysis for genomic prediction - a case study comparing different spatial models in rye.
    Bernal-Vasquez AM; Möhring J; Schmidt M; Schönleben M; Schön CC; Piepho HP
    BMC Genomics; 2014 Aug; 15(1):646. PubMed ID: 25087599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.