BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28569207)

  • 1. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens.
    Fortin JP; Tan J; Gascoigne KE; Haverty PM; Forrest WF; Costa MR; Martin SE
    Genome Biol; 2019 Jan; 20(1):21. PubMed ID: 30683138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined gene essentiality scoring improves the prediction of cancer dependency maps.
    Wang W; Malyutina A; Pessia A; Saarela J; Heckman CA; Tang J
    EBioMedicine; 2019 Dec; 50():67-80. PubMed ID: 31732481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer.
    Wang T; Gautam P; Rousu J; Aittokallio T
    Comput Struct Biotechnol J; 2020; 18():3819-3832. PubMed ID: 33335681
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Sun N; Petiwala S; Lu C; Hutti JE; Hu M; Hu M; Domanus MH; Mitra D; Addo SN; Miller CP; Chung N
    CRISPR J; 2019 Aug; 2():230-245. PubMed ID: 31436504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
    Tang YC; Ho SC; Tan E; Ng AWT; McPherson JR; Goh GYL; Teh BT; Bard F; Rozen SG
    Breast Cancer Res; 2018 Mar; 20(1):22. PubMed ID: 29566768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.
    Meyers RM; Bryan JG; McFarland JM; Weir BA; Sizemore AE; Xu H; Dharia NV; Montgomery PG; Cowley GS; Pantel S; Goodale A; Lee Y; Ali LD; Jiang G; Lubonja R; Harrington WF; Strickland M; Wu T; Hawes DC; Zhivich VA; Wyatt MR; Kalani Z; Chang JJ; Okamoto M; Stegmaier K; Golub TR; Boehm JS; Vazquez F; Root DE; Hahn WC; Tsherniak A
    Nat Genet; 2017 Dec; 49(12):1779-1784. PubMed ID: 29083409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated functional, gene expression and genomic analysis for the identification of cancer targets.
    Iorns E; Lord CJ; Grigoriadis A; McDonald S; Fenwick K; Mackay A; Mein CA; Natrajan R; Savage K; Tamber N; Reis-Filho JS; Turner NC; Ashworth A
    PLoS One; 2009; 4(4):e5120. PubMed ID: 19357772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining a Cancer Dependency Map.
    Tsherniak A; Vazquez F; Montgomery PG; Weir BA; Kryukov G; Cowley GS; Gill S; Harrington WF; Pantel S; Krill-Burger JM; Meyers RM; Ali L; Goodale A; Lee Y; Jiang G; Hsiao J; Gerath WFJ; Howell S; Merkel E; Ghandi M; Garraway LA; Root DE; Golub TR; Boehm JS; Hahn WC
    Cell; 2017 Jul; 170(3):564-576.e16. PubMed ID: 28753430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.
    Suzuki HI; Spengler RM; Grigelioniene G; Kobayashi T; Sharp PA
    Nat Genet; 2018 May; 50(5):657-661. PubMed ID: 29662165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics.
    Hart T; Brown KR; Sircoulomb F; Rottapel R; Moffat J
    Mol Syst Biol; 2014 Jul; 10(7):733. PubMed ID: 24987113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis.
    Yilmazel B; Hu Y; Sigoillot F; Smith JA; Shamu CE; Perrimon N; Mohr SE
    BMC Bioinformatics; 2014 Jun; 15():192. PubMed ID: 24934636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of RNAi reports identifies dismal commonality at gene-level and reveals an unprecedented enrichment in pooled shRNA screens.
    Bhinder B; Djaballah H
    Comb Chem High Throughput Screen; 2013 Nov; 16(9):665-81. PubMed ID: 23848309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.
    McFarland JM; Ho ZV; Kugener G; Dempster JM; Montgomery PG; Bryan JG; Krill-Burger JM; Green TM; Vazquez F; Boehm JS; Golub TR; Hahn WC; Root DE; Tsherniak A
    Nat Commun; 2018 Nov; 9(1):4610. PubMed ID: 30389920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive platform for highly multiplexed mammalian functional genetic screens.
    Ketela T; Heisler LE; Brown KR; Ammar R; Kasimer D; Surendra A; Ericson E; Blakely K; Karamboulas D; Smith AM; Durbic T; Arnoldo A; Cheung-Ong K; Koh JL; Gopal S; Cowley GS; Yang X; Grenier JK; Giaever G; Root DE; Moffat J; Nislow C
    BMC Genomics; 2011 May; 12():213. PubMed ID: 21548937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of RNAi screens to uncover resistance mechanisms in cancer cells and identify synthetic lethal interactions.
    Diehl P; Tedesco D; Chenchik A
    Drug Discov Today Technol; 2014 Mar; 11():11-8. PubMed ID: 24847648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.