These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
652 related articles for article (PubMed ID: 28569414)
1. BSA-AuNPs@Tb-AMP metal-organic frameworks for ratiometric fluorescence detection of DPA and Hg Cai K; Zeng M; Liu F; Liu N; Huang Z; Song Y; Wang L Luminescence; 2017 Nov; 32(7):1277-1282. PubMed ID: 28569414 [TBL] [Abstract][Full Text] [Related]
2. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
3. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers. Liu N; Hao J; Cai K; Zeng M; Huang Z; Chen L; Peng B; Li P; Wang L; Song Y Luminescence; 2018 Feb; 33(1):119-124. PubMed ID: 28776941 [TBL] [Abstract][Full Text] [Related]
4. Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores. Yang D; Mei S; Wen Z; Wei X; Cui Z; Yang B; Wei C; Qiu Y; Li M; Li H; Zhang W; Xie F; Wang L; Guo R Mikrochim Acta; 2020 Nov; 187(12):666. PubMed ID: 33206253 [TBL] [Abstract][Full Text] [Related]
5. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)- functionalized UIO-67 metal-organic framework. Zhang X; Zhang W; Li G; Liu Q; Xu Y; Liu X Mikrochim Acta; 2020 Jan; 187(2):122. PubMed ID: 31932902 [TBL] [Abstract][Full Text] [Related]
6. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor. Qi YX; Zhang M; Zhu A; Shi G Analyst; 2015 Aug; 140(16):5656-61. PubMed ID: 26140286 [TBL] [Abstract][Full Text] [Related]
7. A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Bao J; Mei J; Cheng X; Ren D; Xu G; Wei F; Sun Y; Hu Q; Cen Y Mikrochim Acta; 2021 Feb; 188(3):84. PubMed ID: 33587161 [TBL] [Abstract][Full Text] [Related]
8. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389 [TBL] [Abstract][Full Text] [Related]
9. Emissions of terbium metal-organic frameworks modulated by dispersive/agglomerated gold nanoparticles for the construction of prostate-specific antigen biosensor. Qu F; Ding Y; Lv X; Xia L; You J; Han W Anal Bioanal Chem; 2019 Jul; 411(17):3979-3988. PubMed ID: 31089787 [TBL] [Abstract][Full Text] [Related]
10. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Li X; Luo J; Jiang X; Yang M; Rasooly A Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771 [TBL] [Abstract][Full Text] [Related]
11. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles. Sun C; Zhao S; Qu F; Han W; You J Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046 [TBL] [Abstract][Full Text] [Related]
12. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Zhang Y; Li B; Ma H; Zhang L; Zheng Y Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Bhardwaj N; Bhardwaj S; Mehta J; Kim KH; Deep A Biosens Bioelectron; 2016 Dec; 86():799-804. PubMed ID: 27479046 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Terbium-Functionalized Cadmium Organic Framework with Proper Energy Levels as a Ratiometric Probe of an Anthrax Biomarker. Xie HH; Wang LW; Tang SF Inorg Chem; 2024 Jul; 63(29):13516-13524. PubMed ID: 38959250 [TBL] [Abstract][Full Text] [Related]
15. Terbium (III)-referenced N-doped carbon dots for ratiometric fluorescent sensing of mercury (II) in seafood. He X; Han Y; Luo X; Yang W; Li C; Tang W; Yue T; Li Z Food Chem; 2020 Aug; 320():126624. PubMed ID: 32208181 [TBL] [Abstract][Full Text] [Related]
16. Dual-emission ciprofloxacin-gold nanoclusters enable ratiometric sensing of Cu Saleh SM; Altaiyah S; Ali R Mikrochim Acta; 2024 Mar; 191(4):199. PubMed ID: 38483615 [TBL] [Abstract][Full Text] [Related]
17. Dual-mode detection of 2,6-pyridinedicarboxylic acid based on the enhanced peroxidase-like activity and fluorescence property of novel Eu-MOFs. Yi J; Han X; Jian J; Lai Y; Lu J; Peng L; Liu Z; Xue J; Zhou H; Li X Anal Methods; 2024 Apr; 16(16):2606-2613. PubMed ID: 38618990 [TBL] [Abstract][Full Text] [Related]
18. Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles. Zhang Z; Wu Y; He S; Xu Y; Li G; Ye B Anal Chim Acta; 2018 Jul; 1014():85-90. PubMed ID: 29523256 [TBL] [Abstract][Full Text] [Related]
19. Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Chang HY; Hsiung TM; Huang YF; Huang CC Environ Sci Technol; 2011 Feb; 45(4):1534-9. PubMed ID: 21268634 [TBL] [Abstract][Full Text] [Related]
20. Reusable fluorescence nanoprobe based on DNA-functionalized metal-organic framework for ratiometric detection of mercury (II) ions. Li S; Pi J; Huang Y; Li Y; Tan H Mikrochim Acta; 2024 Oct; 191(11):646. PubMed ID: 39367246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]