These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28569769)

  • 1. Tracing the oxygen isotope composition of the upper Earth's atmosphere using cosmic spherules.
    Pack A; Höweling A; Hezel DC; Stefanak MT; Beck AK; Peters STM; Sengupta S; Herwartz D; Folco L
    Nat Commun; 2017 Jun; 8():15702. PubMed ID: 28569769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere.
    Tomkins AG; Bowlt L; Genge M; Wilson S; Brand HE; Wykes JL
    Nature; 2016 May; 533(7602):235-8. PubMed ID: 27172047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland.
    Deutsch A; Greshake A; Pesonen LJ; Pihlaja P
    Nature; 1998 Sep; 395(6698):146-8. PubMed ID: 9744272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of cosmic dust in the Earth's atmosphere.
    Carrillo-Sánchez JD; Nesvorný D; Pokorný P; Janches D; Plane JM
    Geophys Res Lett; 2016 Dec; 43(23):11979-11986. PubMed ID: 28275286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accretion rate of cosmic spherules measured at the South Pole.
    Taylor S; Lever JH; Harvey RP
    Nature; 1998 Apr; 392(6679):899-903. PubMed ID: 9582069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric CO
    Lehmer OR; Catling DC; Buick R; Brownlee DE; Newport S
    Sci Adv; 2020 Jan; 6(4):eaay4644. PubMed ID: 32010786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the size and velocity distribution of cosmic dust particles entering the atmosphere.
    Carrillo-Sánchez JD; Plane JM; Feng W; Nesvorný D; Janches D
    Geophys Res Lett; 2015 Aug; 42(15):6518-6525. PubMed ID: 27478282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].
    Ivlev AA
    Zh Evol Biokhim Fiziol; 2010; 46(3):247-60. PubMed ID: 20583589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidised micrometeorites as evidence for low atmospheric pressure on the early Earth.
    Rimmer PB; Shorttle O; Rugheimer S
    Geochem Perspect Lett; 2019; 9():38-42. PubMed ID: 31187073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond Laser Ablation-Multicollector Inductively Coupled Plasma-Mass Spectrometry for in Situ Fe Isotopic Analysis of Micrometeorites: Application to Micrometer-Sized Glassy Cosmic Spherules.
    González de Vega C; Costas-Rodríguez M; Van Acker T; Goderis S; Vanhaecke F
    Anal Chem; 2020 Mar; 92(5):3572-3580. PubMed ID: 32013393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micrometeorite collections: a review and their current status.
    van Ginneken M; Wozniakiewicz PJ; Brownlee DE; Debaille V; Della Corte V; Delauche L; Duprat J; Engrand C; Folco L; Fries M; Gattacceca J; Genge MJ; Goderis S; Gounelle M; Harvey RP; Jonker G; Krämer Ruggiu L; Larsen J; Lever JH; Noguchi T; Peterson S; Rochette P; Rojas J; Rotundi A; Rudraswami NG; Suttle MD; Taylor S; Van Maldeghem F; Zolensky M
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2273):20230195. PubMed ID: 38736337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Features of Metallic Spherules.
    Schmidt RA; Venkataraman KV; Jackson ML; Woollard GP
    Science; 1963 Nov; 142(3592):581-2. PubMed ID: 17738566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonaceous micrometeorites from Antarctica.
    Engrand C; Maurette M
    Meteorit Planet Sci; 1998 Jul; 33(4):565-80. PubMed ID: 11543069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric radioactive isotopes at orbital altitudes.
    Gregory JC
    Radiat Meas; 1996 Nov; 26(6):841-50. PubMed ID: 11540517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere?
    Planavsky NJ; Reinhard CT; Isson TT; Ozaki K; Crockford PW
    Astrobiology; 2020 May; 20(5):628-636. PubMed ID: 32228301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapped antiprotons produced by cosmic rays in the Earth's magnetosphere.
    Pugacheva G; Gusev AA; Jayanthi UB; Schuch NG; Spjeldvik WN; Choque KT
    Adv Space Res; 2004; 34(6):1433-7. PubMed ID: 15881788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term sedimentary recycling of rare sulphur isotope anomalies.
    Reinhard CT; Planavsky NJ; Lyons TW
    Nature; 2013 May; 497(7447):100-3. PubMed ID: 23615613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidized micrometeorites suggest either high
    Payne RC; Brownlee D; Kasting JF
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1360-1366. PubMed ID: 31907311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic.
    Colwyn DA; Sheldon ND; Maynard JB; Gaines R; Hofmann A; Wang X; Gueguen B; Asael D; Reinhard CT; Planavsky NJ
    Geobiology; 2019 Nov; 17(6):579-593. PubMed ID: 31436043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.