These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 28569836)

  • 1. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome.
    Teschendorff AE; Enver T
    Nat Commun; 2017 Jun; 8():15599. PubMed ID: 28569836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Differentiation Potency of Single Cells Using Single-Cell Entropy (SCENT).
    Chen W; Teschendorff AE
    Methods Mol Biol; 2019; 1935():125-139. PubMed ID: 30758824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data.
    Kim J; T Jakobsen S; Natarajan KN; Won KJ
    Nucleic Acids Res; 2021 Jan; 49(1):e1. PubMed ID: 33170214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular network entropy as the energy potential in Waddington's differentiation landscape.
    Banerji CR; Miranda-Saavedra D; Severini S; Widschwendter M; Enver T; Zhou JX; Teschendorff AE
    Sci Rep; 2013 Oct; 3():3039. PubMed ID: 24154593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Waddington's epigenetic landscape: a comparison of single-cell potency measures.
    Shi J; Teschendorff AE; Chen W; Chen L; Li T
    Brief Bioinform; 2020 Jan; 21(1):248-261. PubMed ID: 30289442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data.
    Teschendorff AE; Maity AK; Hu X; Weiyan C; Lechner M
    Bioinformatics; 2021 Jul; 37(11):1528-1534. PubMed ID: 33244588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.
    Banerji CR; Severini S; Caldas C; Teschendorff AE
    PLoS Comput Biol; 2015 Mar; 11(3):e1004115. PubMed ID: 25793737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Estimation of Single-Cell Differentiation Potency Based on Network Topology and Gene Ontology Information.
    Ni X; Geng B; Zheng H; Shi J; Hu G; Gao J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3255-3262. PubMed ID: 34529570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage-dependent bias creates the appearance of binary splicing in single cells.
    Buen Abad Najar CF; Yosef N; Lareau LF
    Elife; 2020 Jun; 9():. PubMed ID: 32597758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells.
    Buettner F; Natarajan KN; Casale FP; Proserpio V; Scialdone A; Theis FJ; Teichmann SA; Marioni JC; Stegle O
    Nat Biotechnol; 2015 Feb; 33(2):155-60. PubMed ID: 25599176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells.
    Kim T; Echeagaray OH; Wang BJ; Casillas A; Broughton KM; Kim BH; Sussman MA
    Sci Rep; 2018 Aug; 8(1):12060. PubMed ID: 30104715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation.
    Shang Z; Chen D; Wang Q; Wang S; Deng Q; Wu L; Liu C; Ding X; Wang S; Zhong J; Zhang D; Cai X; Zhu S; Yang H; Liu L; Fink JL; Chen F; Liu X; Gao Z; Xu X
    Gigascience; 2018 Nov; 7(11):. PubMed ID: 30239706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing cell lineages from single-cell transcriptomes.
    Chen J; Rénia L; Ginhoux F
    Mol Aspects Med; 2018 Feb; 59():95-113. PubMed ID: 29107741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying pluripotency landscape of cell differentiation from scRNA-seq data by continuous birth-death process.
    Shi J; Li T; Chen L; Aihara K
    PLoS Comput Biol; 2019 Nov; 15(11):e1007488. PubMed ID: 31721764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell Studies of Intestinal Stem Cell Heterogeneity During Homeostasis and Regeneration.
    Norkin M; Capdevila C; Calderon RI; Su T; Trifas M; Ordóñez-Morán P; Yan KS
    Methods Mol Biol; 2020; 2171():155-167. PubMed ID: 32705640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell gene expression analysis reveals diversity among human spermatogonia.
    Neuhaus N; Yoon J; Terwort N; Kliesch S; Seggewiss J; Huge A; Voss R; Schlatt S; Grindberg RV; Schöler HR
    Mol Hum Reprod; 2017 Feb; 23(2):79-90. PubMed ID: 28093458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism.
    Damiani C; Maspero D; Di Filippo M; Colombo R; Pescini D; Graudenzi A; Westerhoff HV; Alberghina L; Vanoni M; Mauri G
    PLoS Comput Biol; 2019 Feb; 15(2):e1006733. PubMed ID: 30818329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.