These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 28570195)
41. Reversible anti-settlement activity against Amphibalanus (=Balanus) amphitrite, Bugula neritina, and Hydroides elegans by a nontoxic pharmaceutical compound, mizolastine. Zhou X; Xu Y; Jin C; Qian PY Biofouling; 2009 Nov; 25(8):739-47. PubMed ID: 20183132 [TBL] [Abstract][Full Text] [Related]
42. Transcriptomic Basis of Metamorphic Competence in the Salt-Marsh-Dwelling Polychaete Capitella teleta. Burns R; Pechenik J Biol Bull; 2017 Jun; 232(3):158-170. PubMed ID: 28898599 [TBL] [Abstract][Full Text] [Related]
43. Protein kinase C is involved in cyclic adenosine monophosphate formation due to PGF2 alpha desensitization in bovine iris sphincter. Tachado SD; Zhang Y; Abdel-Latif AA Invest Ophthalmol Vis Sci; 1993 May; 34(6):2023-32. PubMed ID: 8387977 [TBL] [Abstract][Full Text] [Related]
44. Effects of phosphodiesterase inhibitors on human lung mast cell and basophil function. Weston MC; Anderson N; Peachell PT Br J Pharmacol; 1997 May; 121(2):287-95. PubMed ID: 9154339 [TBL] [Abstract][Full Text] [Related]
45. The B vitamins nicotinamide (B3) and riboflavin (B2) stimulate metamorphosis in larvae of the deposit-feeding polychaete Capitella teleta: implications for a sensory ligand-gated ion channel. Burns RT; Pechenik JA; Biggers WJ; Scavo G; Lehman C PLoS One; 2014; 9(11):e109535. PubMed ID: 25390040 [TBL] [Abstract][Full Text] [Related]
46. Effects of calmodulin inhibitors on cyprid larvae of the barnacle, Balanus amphitrite. Yamamoto H; Tachibana A; Saikawa W; Nagano M; Matsumura K; Fusetani N J Exp Zool; 1998 Jan; 280(1):8-17. PubMed ID: 9437848 [TBL] [Abstract][Full Text] [Related]
47. Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus. Amador-Cano G; Carpizo-Ituarte E; Cristino-Jorge D Biol Bull; 2006 Apr; 210(2):121-31. PubMed ID: 16641517 [TBL] [Abstract][Full Text] [Related]
48. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Hadfield MG Ann Rev Mar Sci; 2011; 3():453-70. PubMed ID: 21329213 [TBL] [Abstract][Full Text] [Related]
49. Calcium control of metamorphosis in polychaete larvae. Ilan M; Jensen RA; Morse DE J Exp Zool; 1993 Nov; 267(4):423-30. PubMed ID: 8270894 [TBL] [Abstract][Full Text] [Related]
50. Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Xu Y; Li H; Li X; Xiao X; Qian PY Mar Biotechnol (NY); 2009; 11(4):495-504. PubMed ID: 19030931 [TBL] [Abstract][Full Text] [Related]
51. Dissection of lymphocyte function-associated antigen 1-dependent adhesion and signal transduction in human natural killer cells shown by the use of cholera or pertussis toxin. Poggi A; Spada F; Costa P; Tomasello E; Revello V; Pella N; Zocchi MR; Moretta L Eur J Immunol; 1996 May; 26(5):967-75. PubMed ID: 8647187 [TBL] [Abstract][Full Text] [Related]
52. Effects of the tumor promoter, phorbol 12-myristate, 13-acetate, on the epidermal adenylate cyclase system: evidence for adenylate cyclase-regulation by protein kinase C. Iizuka H; Sakai H; Tamura T J Invest Dermatol; 1989 Sep; 93(3):387-91. PubMed ID: 2549124 [TBL] [Abstract][Full Text] [Related]
53. High bacterial diversity in nearshore and oceanic biofilms and their influence on larval settlement by Hydroides elegans (Polychaeta). Lema KA; Constancias F; Rice SA; Hadfield MG Environ Microbiol; 2019 Sep; 21(9):3472-3488. PubMed ID: 31136079 [TBL] [Abstract][Full Text] [Related]
54. Adenylate cyclase/cAMP/protein kinase A signaling pathway inhibits endothelin type A receptor-operated Ca²⁺ entry mediated via transient receptor potential canonical 6 channels. Horinouchi T; Higa T; Aoyagi H; Nishiya T; Terada K; Miwa S J Pharmacol Exp Ther; 2012 Jan; 340(1):143-51. PubMed ID: 22001259 [TBL] [Abstract][Full Text] [Related]
55. Prostaglandin receptors in NIH 3T3 cells: coupling of one receptor to adenylate cyclase and of a second receptor to phospholipase C. Gusovsky F Mol Pharmacol; 1991 Nov; 40(5):633-8. PubMed ID: 1658602 [TBL] [Abstract][Full Text] [Related]
56. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Debernardi MA; Munshi R; Brooker G Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803 [TBL] [Abstract][Full Text] [Related]
57. Involvement of calyculin A inhibitable protein phosphatases in the cyclic AMP signal transduction pathway of mouse corticotroph tumour (AtT20) cells. Antaraki A; Ang KL; Antoni FA Br J Pharmacol; 1997 Jul; 121(5):991-9. PubMed ID: 9222558 [TBL] [Abstract][Full Text] [Related]
58. The actions of prostaglandin E2 on potassium currents in rat tail artery vascular smooth muscle cells: regulation by protein kinase A and protein kinase C. Ren J; Karpinski E; Benishin CG J Pharmacol Exp Ther; 1996 Apr; 277(1):394-402. PubMed ID: 8613946 [TBL] [Abstract][Full Text] [Related]
59. Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L. Dobretsov SV; Qian PY Biofouling; 2003 Feb; 19(1):57-63. PubMed ID: 14618689 [TBL] [Abstract][Full Text] [Related]
60. ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells. Anderson RJ; Breckon R; Dixon BS J Clin Invest; 1991 May; 87(5):1732-8. PubMed ID: 1850760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]