These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 28570535)
1. Visualization and Quantitative Analysis of Embryonic Angiogenesis in Xenopus tropicalis. Ohk J; Jung H J Vis Exp; 2017 May; (123):. PubMed ID: 28570535 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis. Levine AJ; Munoz-Sanjuan I; Bell E; North AJ; Brivanlou AH Dev Biol; 2003 Feb; 254(1):50-67. PubMed ID: 12606281 [TBL] [Abstract][Full Text] [Related]
3. Xenopus tropicalis: an ideal experimental animal in amphibia. Kashiwagi K; Kashiwagi A; Kurabayashi A; Hanada H; Nakajima K; Okada M; Takase M; Yaoita Y Exp Anim; 2010; 59(4):395-405. PubMed ID: 20660986 [TBL] [Abstract][Full Text] [Related]
4. What guides early embryonic blood vessel formation? Weinstein BM Dev Dyn; 1999 May; 215(1):2-11. PubMed ID: 10340752 [TBL] [Abstract][Full Text] [Related]
5. Visualization of mouse embryo angiogenesis by fluorescence-based staining. Liu Y; Antonyak M; Peng X Methods Mol Biol; 2012; 843():79-85. PubMed ID: 22222523 [TBL] [Abstract][Full Text] [Related]
6. Xenopus Dab2 is required for embryonic angiogenesis. Cheong SM; Choi SC; Han JK BMC Dev Biol; 2006 Dec; 6():63. PubMed ID: 17176484 [TBL] [Abstract][Full Text] [Related]
7. Neovascularization of the Xenopus embryo. Cleaver O; Tonissen KF; Saha MS; Krieg PA Dev Dyn; 1997 Sep; 210(1):66-77. PubMed ID: 9286596 [TBL] [Abstract][Full Text] [Related]
8. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Hirsch N; Zimmerman LB; Gray J; Chae J; Curran KL; Fisher M; Ogino H; Grainger RM Dev Dyn; 2002 Dec; 225(4):522-35. PubMed ID: 12454928 [TBL] [Abstract][Full Text] [Related]
9. Cellular and molecular characterization of a novel primary osteoblast culture from the vertebrate model organism Xenopus tropicalis. Bertin A; Hanna P; Otarola G; Fritz A; Henriquez JP; Marcellini S Histochem Cell Biol; 2015 Apr; 143(4):431-42. PubMed ID: 25371327 [TBL] [Abstract][Full Text] [Related]
10. Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis. Ny A; Autiero M; Carmeliet P Exp Cell Res; 2006 Mar; 312(5):684-93. PubMed ID: 16309670 [TBL] [Abstract][Full Text] [Related]
11. Imaging blood vessels and lymphatic vessels in the zebrafish. Jung HM; Isogai S; Kamei M; Castranova D; Gore AV; Weinstein BM Methods Cell Biol; 2016; 133():69-103. PubMed ID: 27263409 [TBL] [Abstract][Full Text] [Related]
12. Suppression of vascular network formation by chronic hypoxia and prolyl-hydroxylase 2 (phd2) deficiency during vertebrate development. Metikala S; Neuhaus H; Hollemann T Angiogenesis; 2016 Apr; 19(2):119-31. PubMed ID: 26678600 [TBL] [Abstract][Full Text] [Related]
13. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling. Yalcin HC Exp Biol Med (Maywood); 2014 Dec; 239(12):1644-52. PubMed ID: 25169937 [TBL] [Abstract][Full Text] [Related]
15. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos. Takase Y; Tadokoro R; Takahashi Y Dev Growth Differ; 2013 Dec; 55(9):792-801. PubMed ID: 24289211 [TBL] [Abstract][Full Text] [Related]
16. Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Cha YR; Weinstein BM Birth Defects Res C Embryo Today; 2007 Dec; 81(4):286-96. PubMed ID: 18228261 [TBL] [Abstract][Full Text] [Related]
17. Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. Schwerte T; Fritsche R Comp Biochem Physiol A Mol Integr Physiol; 2003 May; 135(1):131-45. PubMed ID: 12727550 [TBL] [Abstract][Full Text] [Related]
18. Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Dinguirard N; Yoshino TP Mol Biochem Parasitol; 2006 Apr; 146(2):219-30. PubMed ID: 16427708 [TBL] [Abstract][Full Text] [Related]
19. The role of pparĪ³ in embryonic development of Xenopus tropicalis under triphenyltin-induced teratogenicity. Zhu J; Huang X; Jiang H; Hu L; Michal JJ; Jiang Z; Shi H Sci Total Environ; 2018 Aug; 633():1245-1252. PubMed ID: 29758877 [TBL] [Abstract][Full Text] [Related]
20. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis. Henry JJ; Elkins MB Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]