BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28570647)

  • 1. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide.
    Bengtson S; Knudsen KB; Kyjovska ZO; Berthing T; Skaug V; Levin M; Koponen IK; Shivayogimath A; Booth TJ; Alonso B; Pesquera A; Zurutuza A; Thomsen BL; Troelsen JT; Jacobsen NR; Vogel U
    PLoS One; 2017; 12(6):e0178355. PubMed ID: 28570647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transcriptomic overview of lung and liver changes one day after pulmonary exposure to graphene and graphene oxide.
    Poulsen SS; Bengtson S; Williams A; Jacobsen NR; Troelsen JT; Halappanavar S; Vogel U
    Toxicol Appl Pharmacol; 2021 Jan; 410():115343. PubMed ID: 33227293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family.
    Roberts JR; Mercer RR; Stefaniak AB; Seehra MS; Geddam UK; Chaudhuri IS; Kyrlidis A; Kodali VK; Sager T; Kenyon A; Bilgesu SA; Eye T; Scabilloni JF; Leonard SS; Fix NR; Schwegler-Berry D; Farris BY; Wolfarth MG; Porter DW; Castranova V; Erdely A
    Part Fibre Toxicol; 2016 Jun; 13(1):34. PubMed ID: 27328692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice.
    Kyjovska ZO; Jacobsen NR; Saber AT; Bengtson S; Jackson P; Wallin H; Vogel U
    Mutagenesis; 2015 Jul; 30(4):499-507. PubMed ID: 25771385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice.
    Hadrup N; Rahmani F; Jacobsen NR; Saber AT; Jackson P; Bengtson S; Williams A; Wallin H; Halappanavar S; Vogel U
    Nanotoxicology; 2019 Nov; 13(9):1275-1292. PubMed ID: 31441356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice.
    Poulsen SS; Knudsen KB; Jackson P; Weydahl IE; Saber AT; Wallin H; Vogel U
    PLoS One; 2017; 12(4):e0174167. PubMed ID: 28380028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice.
    Modrzynska J; Berthing T; Ravn-Haren G; Jacobsen NR; Weydahl IK; Loeschner K; Mortensen A; Saber AT; Vogel U
    Part Fibre Toxicol; 2018 Jan; 15(1):2. PubMed ID: 29298701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased surface area of halloysite nanotubes due to surface modification predicts lung inflammation and acute phase response after pulmonary exposure in mice.
    Barfod KK; Bendtsen KM; Berthing T; Koivisto AJ; Poulsen SS; Segal E; Verleysen E; Mast J; Holländer A; Jensen KA; Hougaard KS; Vogel U
    Environ Toxicol Pharmacol; 2020 Jan; 73():103266. PubMed ID: 31707308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways.
    Kang Y; Liu J; Wu J; Yin Q; Liang H; Chen A; Shao L
    Int J Nanomedicine; 2017; 12():5501-5510. PubMed ID: 28814866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organomodified nanoclays induce less inflammation, acute phase response, and genotoxicity than pristine nanoclays in mice lungs.
    Di Ianni E; Møller P; Mortensen A; Szarek J; Clausen PA; Saber AT; Vogel U; Jacobsen NR
    Nanotoxicology; 2020 Sep; 14(7):869-892. PubMed ID: 32536294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro.
    Bengtson S; Kling K; Madsen AM; Noergaard AW; Jacobsen NR; Clausen PA; Alonso B; Pesquera A; Zurutuza A; Ramos R; Okuno H; Dijon J; Wallin H; Vogel U
    Environ Mol Mutagen; 2016 Jul; 57(6):469-82. PubMed ID: 27189646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice.
    Wallin H; Kyjovska ZO; Poulsen SS; Jacobsen NR; Saber AT; Bengtson S; Jackson P; Vogel U
    Mutagenesis; 2017 Jan; 32(1):47-57. PubMed ID: 27658823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses.
    Hadrup N; Knudsen KB; Berthing T; Wolff H; Bengtson S; Kofoed C; Espersen R; Højgaard C; Winther JR; Willemoës M; Wedin I; Nuopponen M; Alenius H; Norppa H; Wallin H; Vogel U
    Environ Toxicol Pharmacol; 2019 Feb; 66():116-125. PubMed ID: 30665014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk.
    Saber AT; Lamson JS; Jacobsen NR; Ravn-Haren G; Hougaard KS; Nyendi AN; Wahlberg P; Madsen AM; Jackson P; Wallin H; Vogel U
    PLoS One; 2013; 8(7):e69020. PubMed ID: 23894396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulmonary Responses of Sprague-Dawley Rats in Single Inhalation Exposure to Graphene Oxide Nanomaterials.
    Han SG; Kim JK; Shin JH; Hwang JH; Lee JS; Kim TG; Lee JH; Lee GH; Kim KS; Lee HS; Song NW; Ahn K; Yu IJ
    Biomed Res Int; 2015; 2015():376756. PubMed ID: 26295037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model.
    Li R; Guiney LM; Chang CH; Mansukhani ND; Ji Z; Wang X; Liao YP; Jiang W; Sun B; Hersam MC; Nel AE; Xia T
    ACS Nano; 2018 Feb; 12(2):1390-1402. PubMed ID: 29328670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.
    Poulsen SS; Jackson P; Kling K; Knudsen KB; Skaug V; Kyjovska ZO; Thomsen BL; Clausen PA; Atluri R; Berthing T; Bengtson S; Wolff H; Jensen KA; Wallin H; Vogel U
    Nanotoxicology; 2016 Nov; 10(9):1263-75. PubMed ID: 27323647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.