These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28570671)
1. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. Liebsch C; Graf N; Appelt K; Wilke HJ PLoS One; 2017; 12(6):e0178733. PubMed ID: 28570671 [TBL] [Abstract][Full Text] [Related]
2. EUROSPINE 2016 FULL PAPER AWARD: Wire cerclage can restore the stability of the thoracic spine after median sternotomy: an in vitro study with entire rib cage specimens. Liebsch C; Graf N; Wilke HJ Eur Spine J; 2017 May; 26(5):1401-1407. PubMed ID: 27639711 [TBL] [Abstract][Full Text] [Related]
3. The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens. Liebsch C; Graf N; Wilke HJ J Biomech; 2018 Sep; 78():36-44. PubMed ID: 30031651 [TBL] [Abstract][Full Text] [Related]
4. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081 [TBL] [Abstract][Full Text] [Related]
5. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. Mannen EM; Friis EA; Sis HL; Wong BM; Cadel ES; Anderson DE J Mech Behav Biomed Mater; 2018 Aug; 84():258-264. PubMed ID: 29852313 [TBL] [Abstract][Full Text] [Related]
6. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models. Liebsch C; Graf N; Wilke HJ J Biomech; 2019 Sep; 94():147-157. PubMed ID: 31420155 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785 [TBL] [Abstract][Full Text] [Related]
8. In vitro analysis of the segmental flexibility of the thoracic spine. Wilke HJ; Herkommer A; Werner K; Liebsch C PLoS One; 2017; 12(5):e0177823. PubMed ID: 28520819 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903 [TBL] [Abstract][Full Text] [Related]
10. Rib Presence, Anterior Rib Cage Integrity, and Segmental Length Affect the Stability of the Human Thoracic Spine: An Liebsch C; Wilke HJ Front Bioeng Biotechnol; 2020; 8():46. PubMed ID: 32117927 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical contribution of the rib cage to thoracic stability. Brasiliense LB; Lazaro BC; Reyes PM; Dogan S; Theodore N; Crawford NR Spine (Phila Pa 1976); 2011 Dec; 36(26):E1686-93. PubMed ID: 22138782 [TBL] [Abstract][Full Text] [Related]
12. Stabilizing effect of the rib cage on adjacent segment motion following thoracolumbar posterior fixation of the human thoracic cadaveric spine: A biomechanical study. Rahm MD; Brooks DM; Harris JA; Hart RA; Hughes JL; Ferrick BJ; Bucklen BS Clin Biomech (Bristol); 2019 Dec; 70():217-222. PubMed ID: 31669919 [TBL] [Abstract][Full Text] [Related]
13. Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine. Mannen EM; Anderson JT; Arnold PM; Friis EA Spine (Phila Pa 1976); 2015 Jul; 40(13):E760-6. PubMed ID: 25768687 [TBL] [Abstract][Full Text] [Related]
14. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments. Anderson DE; Mannen EM; Tromp R; Wong BM; Sis HL; Cadel ES; Friis EA; Bouxsein ML J Biomech; 2018 Mar; 70():262-266. PubMed ID: 29106896 [TBL] [Abstract][Full Text] [Related]
15. Thoracic range of motion, stability, and correlation to imaging-determined degeneration. Healy AT; Mageswaran P; Lubelski D; Rosenbaum BP; Matheus V; Benzel EC; Mroz TE J Neurosurg Spine; 2015 Aug; 23(2):170-7. PubMed ID: 25978074 [TBL] [Abstract][Full Text] [Related]
16. Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. Lubelski D; Healy AT; Mageswaran P; Benzel EC; Mroz TE Spine J; 2014 Sep; 14(9):2216-23. PubMed ID: 24662217 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study. Palepu V; Peck JH; Simon DD; Helgeson MD; Nagaraja S J Neurosurg Spine; 2017 Apr; 26(4):524-531. PubMed ID: 28128700 [TBL] [Abstract][Full Text] [Related]
18. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926 [TBL] [Abstract][Full Text] [Related]
19. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Liebsch C; Aleinikov V; Kerimbayev T; Akshulakov S; Kocak T; Vogt M; Jansen JU; Wilke HJ Clin Biomech (Bristol); 2020 Aug; 78():105070. PubMed ID: 32531440 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Oda I; Abumi K; Lü D; Shono Y; Kaneda K Spine (Phila Pa 1976); 1996 Jun; 21(12):1423-9. PubMed ID: 8792518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]