These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28570806)

  • 1. Second-Generation ReaxFF Water Force Field: Improvements in the Description of Water Density and OH-Anion Diffusion.
    Zhang W; van Duin ACT
    J Phys Chem B; 2017 Jun; 121(24):6021-6032. PubMed ID: 28570806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
    Lee SH; Rasaiah JC
    J Chem Phys; 2011 Sep; 135(12):124505. PubMed ID: 21974533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Transport Mechanisms of Hydronium and Hydroxide Ions in Amorphous Solid Water: Hydroxide Goes Brownian while Hydronium Hops.
    Lee du H; Choi CH; Choi TH; Sung BJ; Kang H
    J Phys Chem Lett; 2014 Aug; 5(15):2568-72. PubMed ID: 26277944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope Effects in Water: Differences of Structure, Dynamics, Spectrum, and Proton Transport between Heavy and Light Water from ReaxFF Reactive Force Field Simulations.
    Zhang W; Chen X; van Duin ACT
    J Phys Chem Lett; 2018 Sep; 9(18):5445-5452. PubMed ID: 30188129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the ReaxFF Methodology for Electrolyte-Water Systems.
    Fedkin MV; Shin YK; Dasgupta N; Yeon J; Zhang W; van Duin D; van Duin ACT; Mori K; Fujiwara A; Machida M; Nakamura H; Okumura M
    J Phys Chem A; 2019 Mar; 123(10):2125-2141. PubMed ID: 30775922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface.
    Zhang P; Feng M; Xu X
    ACS Phys Chem Au; 2024 Jul; 4(4):336-346. PubMed ID: 39069983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of iron(III) in aqueous and alkaline environments with ab initio and ReaxFF potentials.
    Riefer A; Hackert-Oschätzchen M; Plänitz P; Meichsner G
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38411229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.
    Konermann L; Kim S
    J Chem Theory Comput; 2022 Jun; 18(6):3781-3794. PubMed ID: 35544700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio QM/MM dynamics of H3O+ in water.
    Intharathep P; Tongraar A; Sagarik K
    J Comput Chem; 2006 Nov; 27(14):1723-32. PubMed ID: 16903001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential proton transfer through water bridges in acid-base reactions.
    Mohammed OF; Pines D; Dreyer J; Pines E; Nibbering ET
    Science; 2005 Oct; 310(5745):83-6. PubMed ID: 16210532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and Surface Propensity of H
    Kronberg R; Laasonen K
    J Phys Chem Lett; 2021 Oct; 12(41):10128-10134. PubMed ID: 34636561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).
    Bonthuis DJ; Mamatkulov SI; Netz RR
    J Chem Phys; 2016 Mar; 144(10):104503. PubMed ID: 26979693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A THz/FTIR fingerprint of the solvated proton: evidence for Eigen structure and Zundel dynamics.
    Decka D; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2015 May; 17(17):11898-907. PubMed ID: 25872169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.
    Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ
    J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxide Solvation and Transport in Anion Exchange Membranes.
    Chen C; Tse YL; Lindberg GE; Knight C; Voth GA
    J Am Chem Soc; 2016 Jan; 138(3):991-1000. PubMed ID: 26716727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.
    Baer MD; Kuo IF; Tobias DJ; Mundy CJ
    J Phys Chem B; 2014 Jul; 118(28):8364-72. PubMed ID: 24762096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductivity, spectroscopic, and computational investigation of H3O+ solvation in ionic liquid BMIBF4.
    Yu L; Clifford J; Pham TT; Almaraz E; Perry F; Caputo GA; Vaden TD
    J Phys Chem B; 2013 Jun; 117(23):7057-64. PubMed ID: 23688053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Anticorrelation Behavior Mechanism between the Grotthuss and Vehicular Diffusions for Proton Transport in Concentrated Acid Solutions.
    Mabuchi T
    J Phys Chem B; 2022 May; 126(17):3319-3326. PubMed ID: 35468285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the aqueous solvation of AsO(OH)
    Ramírez-Solís A; Amaro-Estrada JI; León-Pimentel CI; Hernández-Cobos J; Garrido-Hoyos SE; Saint-Martin H
    Phys Chem Chem Phys; 2018 Jun; 20(24):16568-16578. PubMed ID: 29873361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.