BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28570807)

  • 1. Mechanism of Formation of the Nonstandard Product in the Prenyltransferase Reaction of the G115T Mutant of FtmPT1: A Case of Reaction Dynamics Calling the Shots?
    Pan LL; Song LF; Miao Y; Yang Y; Merz KM
    Biochemistry; 2017 Jun; 56(24):2995-3007. PubMed ID: 28570807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of product selectivity in a prenyl transfer reaction from the same intermediate: exploration of multiple FtmPT1-catalyzed prenyl transfer pathways.
    Pan LL; Yang Y; Merz KM
    Biochemistry; 2014 Sep; 53(38):6126-38. PubMed ID: 25188320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saturation mutagenesis on Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with strongly increased C3-prenylating activity.
    Zhou K; Zhao W; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9943-9953. PubMed ID: 27311563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity.
    Jost M; Zocher G; Tarcz S; Matuschek M; Xie X; Li SM; Stehle T
    J Am Chem Soc; 2010 Dec; 132(50):17849-58. PubMed ID: 21105662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation on Gly115 and Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 increases its catalytic activity toward hydroxynaphthalenes.
    Zhao W; Fan A; Tarcz S; Zhou K; Yin WB; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1989-1998. PubMed ID: 27833992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential rearrangements in the reaction catalyzed by the indole prenyltransferase FtmPT1.
    Mahmoodi N; Tanner ME
    Chembiochem; 2013 Oct; 14(15):2029-37. PubMed ID: 24014462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of aromatic prenylation by NphB.
    Yang Y; Miao Y; Wang B; Cui G; Merz KM
    Biochemistry; 2012 Mar; 51(12):2606-18. PubMed ID: 22385275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1.
    Wollinsky B; Ludwig L; Xie X; Li SM
    Org Biomol Chem; 2012 Dec; 10(46):9262-70. PubMed ID: 23090579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prenylation of a nonaromatic carbon of indolylbutenone by a fungal indole prenyltransferase.
    Chen J; Morita H; Wakimoto T; Mori T; Noguchi H; Abe I
    Org Lett; 2012 Jun; 14(12):3080-3. PubMed ID: 22642693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.
    Bayse CA; Merz KM
    Biochemistry; 2014 Aug; 53(30):5034-41. PubMed ID: 25020142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two lysine residues are responsible for the enzymatic activities of indole prenyltransferases from fungi.
    Stec E; Steffan N; Kremer A; Zou H; Zheng X; Li SM
    Chembiochem; 2008 Sep; 9(13):2055-8. PubMed ID: 18677738
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis.
    Wang J; Chen CC; Yang Y; Liu W; Ko TP; Shang N; Hu X; Xie Y; Huang JW; Zhang Y; Guo RT
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1782-1788. PubMed ID: 29229390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway.
    Metzger U; Keller S; Stevenson CE; Heide L; Lawson DM
    J Mol Biol; 2010 Dec; 404(4):611-26. PubMed ID: 20946900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions.
    Hsieh FL; Chang TH; Ko TP; Wang AH
    J Mol Biol; 2010 Dec; 404(5):859-73. PubMed ID: 20965200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus.
    Grundmann A; Li SM
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2199-2207. PubMed ID: 16000710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides.
    Yin S; Yu X; Wang Q; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1649-60. PubMed ID: 22660767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives.
    Li SM
    Phytochemistry; 2009; 70(15-16):1746-57. PubMed ID: 19398116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus.
    Wunsch C; Mundt K; Li SM
    Appl Microbiol Biotechnol; 2015 May; 99(10):4213-23. PubMed ID: 25744649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.
    Isaksen GV; Hopmann KH; Åqvist J; Brandsdal BO
    Biochemistry; 2016 Apr; 55(14):2153-62. PubMed ID: 26985580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the substrate selectivity and the product regioselectivity of Orf2-catalyzed aromatic prenylations.
    Cui G; Li X; Merz KM
    Biochemistry; 2007 Feb; 46(5):1303-11. PubMed ID: 17260959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.