BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28570855)

  • 1. Dispersion characteristics of the flexural wave assessed using low frequency (50-150kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms.
    Kassou K; Remram Y; Laugier P; Minonzio JG
    Ultrasonics; 2017 Nov; 81():1-9. PubMed ID: 28570855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration.
    Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2010 May; 127(5):2913-9. PubMed ID: 21117742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring guided waves in long bones: modeling and experiments in free and immersed plates.
    Moilanen P; Nicholson PH; Kilappa V; Cheng S; Timonen J
    Ultrasound Med Biol; 2006 May; 32(5):709-19. PubMed ID: 16677930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.
    Chen J; Foiret J; Minonzio JG; Talmant M; Su Z; Cheng L; Laugier P
    Phys Med Biol; 2012 May; 57(10):3025-37. PubMed ID: 22538382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms.
    Minonzio JG; Foiret J; Moilanen P; Pirhonen J; Zhao Z; Talmant M; Timonen J; Laugier P
    J Acoust Soc Am; 2015 Jan; 137(1):EL98-104. PubMed ID: 25618107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate measurement of guided modes in a plate using a bidirectional approach.
    Moreau L; Minonzio JG; Foiret J; Bossy E; Talmant M; Laugier P
    J Acoust Soc Am; 2014 Jan; 135(1):EL15-21. PubMed ID: 24437851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer.
    Kilappa V; Xu K; Moilanen P; Heikkola E; Ta D; Timonen J
    Ultrasound Med Biol; 2013 Jul; 39(7):1223-32. PubMed ID: 23643059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.
    Moilanen P; Zhao Z; Karppinen P; Karppinen T; Kilappa V; Pirhonen J; Myllylä R; Haeggström E; Timonen J
    Ultrasound Med Biol; 2014 Mar; 40(3):521-31. PubMed ID: 24361218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples.
    Foiret J; Minonzio JG; Chappard C; Talmant M; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1478-88. PubMed ID: 25167148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting bone strength with ultrasonic guided waves.
    Bochud N; Vallet Q; Minonzio JG; Laugier P
    Sci Rep; 2017 Mar; 7():43628. PubMed ID: 28256568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On ultrasound waves guided by bones with coupled soft tissues: a mechanism study and in vitro calibration.
    Chen J; Su Z
    Ultrasonics; 2014 Jul; 54(5):1186-96. PubMed ID: 24008173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.
    Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J
    Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials.
    Bossy E; Talmant M; Defontaine M; Patat F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):71-9. PubMed ID: 14995018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of guided mode propagation in fractured long bones.
    Xu K; Liu D; Ta D; Hu B; Wang W
    Ultrasonics; 2014 Jul; 54(5):1210-8. PubMed ID: 24139020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.