These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28570874)

  • 41. Effects of nickel hyperaccumulation on physiological characteristics of Alyssum murale grown on metal contaminated waste amended soil.
    Sellami R; Gharbi F; Rejeb S; Rejeb MN; Henchi B; Echevarria G; Morel JL
    Int J Phytoremediation; 2012 Jul; 14(6):609-20. PubMed ID: 22908630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin.
    Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Persistence of simazine and terbuthylazine in a semiarid soil after organic amendment with urban sewage sludge.
    Navarro S; Vela N; García C; Navarro G
    J Agric Food Chem; 2003 Dec; 51(25):7359-65. PubMed ID: 14640584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge.
    Moura MN; Martín MJ; Burguillo FJ
    J Hazard Mater; 2007 Oct; 149(1):42-8. PubMed ID: 17475400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of organic matter and pH on bentazone sorption in soils.
    Li K; Liu W; Xu D; Lee S
    J Agric Food Chem; 2003 Aug; 51(18):5362-6. PubMed ID: 12926884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sorption of humic substances on aquifer material at artificial recharge of groundwater.
    Juhna T; Klavins M; Eglite L
    Chemosphere; 2003 Jun; 51(9):861-8. PubMed ID: 12697176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of heavy metal ions by iron oxide coated sewage sludge.
    Phuengprasop T; Sittiwong J; Unob F
    J Hazard Mater; 2011 Feb; 186(1):502-7. PubMed ID: 21167637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.
    Martínez CM; Celis LB; Cervantes FJ
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9897-905. PubMed ID: 24013221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.
    Paramasivam S; Fortenberry GZ; Julius A; Sajwan KS; Alva AK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):178-85. PubMed ID: 18172810
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge.
    Agrafioti E; Kalderis D; Diamadopoulos E
    J Environ Manage; 2014 Jan; 133():309-14. PubMed ID: 24412594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.
    Zupancic M; Bukovec P; Milacic R; Scancar J
    Waste Manag; 2006; 26(12):1392-9. PubMed ID: 16488592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil.
    Antoniadis V; Tsadilas CD; Ashworth DJ
    Chemosphere; 2007 Jun; 68(3):489-94. PubMed ID: 17276490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge.
    Liu CC; Lin YC
    Environ Pollut; 2013 Jul; 178():97-101. PubMed ID: 23545343
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A; Alonso-Rojo P; Santos-Francés F
    Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stabilization process within a sewage sludge landfill determined through both particle size distribution and content of humic substances as well as by FT-IR analysis.
    Zhu Y; Zhao Y
    Waste Manag Res; 2011 Apr; 29(4):379-85. PubMed ID: 21030423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.
    Demir A; Köleli N
    Environ Technol; 2013; 34(5-8):799-805. PubMed ID: 23837331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.