These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28570884)

  • 21. Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation.
    Nakagawa K; Iwamoto S; Nakajima M; Shono A; Satoh K
    J Colloid Interface Sci; 2004 Oct; 278(1):198-205. PubMed ID: 15313655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly.
    Osman M; Høiland H; Holmsen H; Ishigami Y
    J Pept Sci; 1998 Nov; 4(7):449-58. PubMed ID: 9851372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process.
    Li Z; Xu D; Yuan Y; Wu H; Hou J; Kang W; Bai B
    Adv Colloid Interface Sci; 2020 Mar; 277():102119. PubMed ID: 32045722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1.
    Mohebali G; Kaytash A; Etemadi N
    Colloids Surf B Biointerfaces; 2012 Oct; 98():120-8. PubMed ID: 22698673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification.
    Liu H; Wang C; Zou S; Wei Z; Tong Z
    Langmuir; 2012 Jul; 28(30):11017-24. PubMed ID: 22762435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emulsification synergism in mixtures of polyelectrolyte brush-grafted nanoparticles and surfactants.
    Saigal T; Xu J; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2015 Jul; 449():152-9. PubMed ID: 25591823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid.
    He Z; Zeng W; Zhu X; Zhao H; Lu Y; Lu Z
    Colloids Surf B Biointerfaces; 2017 Mar; 151():232-239. PubMed ID: 28013167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge modifications to improve the emulsifying properties of whey protein isolate.
    Ma H; Forssell P; Partanen R; Buchert J; Boer H
    J Agric Food Chem; 2011 Dec; 59(24):13246-53. PubMed ID: 22060038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.
    Dhanarajan G; Rangarajan V; Bandi C; Dixit A; Das S; Ale K; Sen R
    J Biotechnol; 2017 Aug; 256():46-56. PubMed ID: 28499818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids.
    Komaiko J; Sastrosubroto A; McClements DJ
    J Agric Food Chem; 2015 Nov; 63(45):10078-88. PubMed ID: 26528859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.
    Yang N; Mao P; Lv R; Zhang K; Fang Y; Nishinari K; Phillips GO
    J Food Sci; 2016 Aug; 81(8):E1971-80. PubMed ID: 27384744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2.
    Darvishi P; Ayatollahi S; Mowla D; Niazi A
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):292-300. PubMed ID: 21345657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties.
    Satapute P; Jogaiah S
    Chemosphere; 2022 Jan; 286(Pt 1):131694. PubMed ID: 34346344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification.
    Gehrmann S; Bunjes H
    Eur J Pharm Biopharm; 2018 May; 126():140-148. PubMed ID: 27870930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and evaluation of hydroxyethyl cellulose-based functional polymer for highly efficient utilization of heavy oil under the harsh reservoir environments.
    Sun C; Ma H; Yu F; Xia S
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128972. PubMed ID: 38151086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2009 May; 164(2-3):1045-50. PubMed ID: 18950937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values.
    Maier C; Zeeb B; Weiss J
    Colloids Surf B Biointerfaces; 2014 May; 117():368-75. PubMed ID: 24681049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer-Coated Nanoparticles for Reversible Emulsification and Recovery of Heavy Oil.
    Qi L; Song C; Wang T; Li Q; Hirasaki GJ; Verduzco R
    Langmuir; 2018 Jun; 34(22):6522-6528. PubMed ID: 29750537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.