These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28570890)
1. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Nadgórska-Socha A; Kandziora-Ciupa M; Trzęsicki M; Barczyk G Chemosphere; 2017 Sep; 183():471-482. PubMed ID: 28570890 [TBL] [Abstract][Full Text] [Related]
2. Using Plantago major and Plantago lanceolata in environmental pollution research in an urban area of Southern Poland. Skrynetska I; Karcz J; Barczyk G; Kandziora-Ciupa M; Ciepał R; Nadgórska-Socha A Environ Sci Pollut Res Int; 2019 Aug; 26(23):23359-23371. PubMed ID: 31201696 [TBL] [Abstract][Full Text] [Related]
3. Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Karmakar D; Padhy PK Chemosphere; 2019 Dec; 237():124522. PubMed ID: 31401430 [TBL] [Abstract][Full Text] [Related]
4. Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Hozhabralsadat MS; Heidari A; Karimian Z; Farzam M Environ Sci Pollut Res Int; 2022 Sep; 29(45):68564-68581. PubMed ID: 35545746 [TBL] [Abstract][Full Text] [Related]
5. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Gjorgieva D; Kadifkova-Panovska T; Bačeva K; Stafilov T Arch Environ Contam Toxicol; 2011 Feb; 60(2):233-40. PubMed ID: 20508923 [TBL] [Abstract][Full Text] [Related]
6. Assessment of airborne heavy metal pollution using plant parts and topsoil. Serbula SM; Miljkovic DDj; Kovacevic RM; Ilic AA Ecotoxicol Environ Saf; 2012 Feb; 76(2):209-14. PubMed ID: 22018546 [TBL] [Abstract][Full Text] [Related]
7. Indicators of environmental contamination by heavy metals in leaves of Taraxacum officinale in two zones of the metropolitan area of Mexico City. Gómez-Arroyo S; Barba-García A; Arenas-Huertero F; Cortés-Eslava J; de la Mora MG; García-Martínez R Environ Sci Pollut Res Int; 2018 Feb; 25(5):4739-4749. PubMed ID: 29197063 [TBL] [Abstract][Full Text] [Related]
8. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Samecka-Cymerman A; Stankiewicz A; Kolon K; Kempers AJ Environ Pollut; 2009 Jul; 157(7):2061-5. PubMed ID: 19282074 [TBL] [Abstract][Full Text] [Related]
9. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas. Jiang Y; Fan M; Hu R; Zhao J; Wu Y Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29844273 [TBL] [Abstract][Full Text] [Related]
10. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities. Kováčik J; Dudáš M; Hedbavny J; Mártonfi P Environ Pollut; 2016 Nov; 218():160-167. PubMed ID: 27566846 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. Tzvetkova N; Petkova K J Environ Biol; 2015 Jan; 36 Spec No():59-63. PubMed ID: 26591883 [TBL] [Abstract][Full Text] [Related]
12. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Pająk M; Halecki W; Gąsiorek M Chemosphere; 2017 Feb; 168():851-859. PubMed ID: 27836278 [TBL] [Abstract][Full Text] [Related]
13. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Zhang PQ; Liu YJ; Chen X; Yang Z; Zhu MH; Li YP Ecotoxicol Environ Saf; 2016 Oct; 132():212-23. PubMed ID: 27326901 [TBL] [Abstract][Full Text] [Related]
14. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Celik A; Kartal AA; Akdoğan A; Kaska Y Environ Int; 2005 Jan; 31(1):105-12. PubMed ID: 15607784 [TBL] [Abstract][Full Text] [Related]
15. Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan. Achakzai K; Khalid S; Adrees M; Bibi A; Ali S; Nawaz R; Rizwan M J Environ Manage; 2017 Apr; 190():252-258. PubMed ID: 28061409 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of heavy metals and biochemical responses in Siberian larch needles in urban area. Vladimirovna Afanasyeva L; Ayushievna Ayushina T Ecotoxicology; 2019 Jul; 28(5):578-588. PubMed ID: 31140045 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Kaur M; Nagpal AK Environ Sci Pollut Res Int; 2017 Aug; 24(23):18881-18895. PubMed ID: 28653199 [TBL] [Abstract][Full Text] [Related]
18. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities. Vázquez S; Martín A; García M; Español C; Navarro E Environ Sci Pollut Res Int; 2016 Apr; 23(8):7582-94. PubMed ID: 26732705 [TBL] [Abstract][Full Text] [Related]
19. Air pollution tolerance, anticipated performance, and metal accumulation capacity of common plant species for green belt development. Mondal S; Singh G Environ Sci Pollut Res Int; 2022 Apr; 29(17):25507-25518. PubMed ID: 34843046 [TBL] [Abstract][Full Text] [Related]
20. Environmental pollution biomonitoring around a cement factory based on the Air Pollution Tolerance Index of some tree species. Eslamdoust J; Hosseini SM; Kardel F; Pandey AK Environ Monit Assess; 2023 Nov; 195(12):1425. PubMed ID: 37936028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]