BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2857090)

  • 1. alpha, beta-Bidentate CrADP abolishes the negative cooperativity of yeast mitochondrial F1-ATPase.
    Wieker HJ; Hess B
    Biochim Biophys Acta; 1985 Jan; 806(1):35-41. PubMed ID: 2857090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-nucleotide structural characteristics during catalysis by beef heart mitochondrial F1.
    Gruys KJ; Urbauer JL; Schuster SM
    J Biol Chem; 1985 Jun; 260(11):6533-40. PubMed ID: 2860107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Swinbourne plots to study potential suicide substrates: effects of ATP and ADP on yeast mitochondrial F1-ATPase.
    Jenkins WT
    Anal Biochem; 1985 Dec; 151(2):231-4. PubMed ID: 2869716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase.
    Danenberg KD; Cleland WW
    Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP.
    Dou C; Fortes PA; Allison WS
    Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F(1)-ATPase.
    Mitome N; Ono S; Suzuki T; Shimabukuro K; Muneyuki E; Yoshida M
    Eur J Biochem; 2002 Jan; 269(1):53-60. PubMed ID: 11784298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine alpha 244 is derivatized when the bovine heart mitochondrial F1-ATPase is inactivated with 5'-p-fluorosulfonylbenzoylethenoadenosine.
    Verburg JG; Allison WS
    J Biol Chem; 1990 May; 265(14):8065-74. PubMed ID: 2139876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate and inhibitor activities of the screw sense isomers of metal-nucleotide complexes in the formyltetrahydrofolate synthetase reaction.
    Mejillano MR; Wendland MF; Everett GW; Rabinowitz JC; Himes RH
    Biochemistry; 1986 Mar; 25(5):1067-72. PubMed ID: 3516212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus: purification, characterization, and kinetic studies.
    de Vicente JI; del Valle P; Busto F; de Arriaga D; Soler J
    Biochem Cell Biol; 1991 Jul; 69(7):454-9. PubMed ID: 1838928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of exchange-inert metal-nucleotide complexes on the kinetics of beef heart mitochondrial F1-ATPase.
    Steinke L; Bacon R; Schuster SM
    Arch Biochem Biophys; 1987 Nov; 258(2):482-90. PubMed ID: 2890328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamine 170 to tyrosine substitution in yeast mitochondrial F1 beta-subunit increases catalytic site interaction with GDP and IDP and produces negative cooperativity of GTP and ITP hydrolysis.
    Jault JM; Divita G; Allison WS; Di Pietro A
    J Biol Chem; 1993 Oct; 268(28):20762-7. PubMed ID: 8407901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural preferences for the binding of chromium nucleotides by beef heart mitochondrial ATPase.
    Bossard MJ; Schuster SM
    J Biol Chem; 1981 Jul; 256(13):6617-22. PubMed ID: 6453868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode of inhibition of sodium azide on H+-ATPase of Escherichia coli.
    Noumi T; Maeda M; Futai M
    FEBS Lett; 1987 Mar; 213(2):381-4. PubMed ID: 2881810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of nucleotide binding sites on mitochondrial F1-ATPase from yeast.
    Recktenwald D; Hess B
    Biochim Biophys Acta; 1980 Oct; 592(3):377-84. PubMed ID: 6448067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of yeast mitochondrial F1-ATPase, F0F1-ATPase and submitochondrial particles by rhodamines and ethidium bromide.
    Wieker HJ; Kuschmitz D; Hess B
    Biochim Biophys Acta; 1987 Jun; 892(1):108-17. PubMed ID: 2883991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Co(III)(NH3)4ATP on the kinetics of beef heart mitochondrial ATPase.
    Steinke L; Schuster SM
    Arch Biochem Biophys; 1985 May; 238(2):629-35. PubMed ID: 2859840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites.
    Grodsky NB; Dou C; Allison WS
    Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.