These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 28570902)

  • 1. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a restricted chlorine-dosing strategy for UV/chlorine and post-chlorination under different pH and UV irradiation wavelength conditions.
    Cheng S; Wu J; Zuo YT; Han YZ; Ji WX; Li Y; Huo ZL; Li AM; Li WT
    Chemosphere; 2020 Nov; 258():127393. PubMed ID: 32947669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water.
    Huang X; Gao N; Deng Y
    J Environ Sci (China); 2008; 20(2):246-51. PubMed ID: 18574968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2012 Oct; 46(20):11054-61. PubMed ID: 22963047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Bromate ions formation in UV/chlorination processes for bromide-containing solutions].
    Huang X; Gao NY; Zhao JF; Zhu ZL
    Huan Jing Ke Xue; 2007 Nov; 28(11):2526-32. PubMed ID: 18290477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bromate formation from bromide oxidation by the UV/persulfate process.
    Fang JY; Shang C
    Environ Sci Technol; 2012 Aug; 46(16):8976-83. PubMed ID: 22831804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.
    Liu C; von Gunten U; Croué JP
    Water Res; 2013 Sep; 47(14):5307-15. PubMed ID: 23866145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected trends for the formation of chlorate and bromate during the photolysis of chlorine in bromide-containing water.
    Zhang Y; Hua Z; Zhang X; Guo K; Fang J
    Water Res; 2023 Jul; 240():120100. PubMed ID: 37247439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water.
    Watts MJ; Linden KG
    Water Res; 2007 Jul; 41(13):2871-8. PubMed ID: 17498769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of bromate during ferrate(VI) oxidation of bromide in water.
    Huang X; Deng Y; Liu S; Song Y; Li N; Zhou J
    Chemosphere; 2016 Jul; 155():528-533. PubMed ID: 27153235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies.
    Yang J; Dong Z; Jiang C; Wang C; Liu H
    Chemosphere; 2019 Dec; 237():124521. PubMed ID: 31408797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.
    Wenhai C; Tengfei C; Erdeng D; Deng Y; Yingqing G; Naiyun G
    Ecotoxicol Environ Saf; 2016 Feb; 124():147-154. PubMed ID: 26513530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process.
    Guo K; Zheng S; Zhang X; Zhao L; Ji S; Chen C; Wu Z; Wang D; Fang J
    Environ Sci Technol; 2020 May; 54(10):6415-6426. PubMed ID: 32320225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Targeted and Novel Disinfection Byproducts during Chlorine Photolysis in the Presence of Bromide.
    Bulman DM; Milstead RP; Remucal CK
    Environ Sci Technol; 2023 Nov; 57(47):18877-18887. PubMed ID: 37363941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.
    Wu Z; Guo K; Fang J; Yang X; Xiao H; Hou S; Kong X; Shang C; Yang X; Meng F; Chen L
    Water Res; 2017 Dec; 126():351-360. PubMed ID: 28985600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO
    Kong X; Wu Z; Ren Z; Guo K; Hou S; Hua Z; Li X; Fang J
    Water Res; 2018 Jun; 137():242-250. PubMed ID: 29550727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of synthetic dye containing textile raw wastewater effluent using UV/Chlorine/Br photolysis process followed by activated carbon adsorption.
    Ghanbari S; Fatehizadeh A; Khiadani M; Taheri E; Iqbal HMN
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39400-39409. PubMed ID: 35103940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate.
    Li Z; Chen Z; Xiang Y; Ling L; Fang J; Shang C; Dionysiou DD
    Water Res; 2015 Oct; 83():132-40. PubMed ID: 26143270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources.
    Yin R; Ling L; Shang C
    Water Res; 2018 Oct; 142():452-458. PubMed ID: 29913386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.