BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28570921)

  • 1. Airborne gamma-ray spectrometry data processing using 1.5D inversion.
    Druker E
    J Environ Radioact; 2017 Oct; 177():13-23. PubMed ID: 28570921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne gamma-ray spectra processing: Extracting photopeaks.
    Druker E
    J Environ Radioact; 2018 Jul; 187():22-31. PubMed ID: 29494936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.
    Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I
    J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.
    Youssef MA
    J Environ Radioact; 2016 Feb; 152():75-84. PubMed ID: 26650828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
    Šálek O; Matolín M; Gryc L
    J Environ Radioact; 2018 Feb; 182():101-107. PubMed ID: 29220714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.
    Kock P; Rääf C; Samuelsson C
    J Environ Radioact; 2014 Feb; 128():84-90. PubMed ID: 24321866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of airborne and terrestrial gamma spectrometry measurements - evaluation of three areas in southern Sweden.
    Kock P; Samuelsson C
    J Environ Radioact; 2011 Jun; 102(6):605-13. PubMed ID: 21481503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of airborne gamma-ray spectrometry for environmental assessment of the rehabilitated nabarlek uranium mine, Australia.
    Martin P; Tims S; McGill A; Ryan B; Pfitzner K
    Environ Monit Assess; 2006 Apr; 115(1-3):531-54. PubMed ID: 16649135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of different filtering techniques applied to spectra from airborne gamma spectrometry.
    Wilhelm E; Gutierrez S; Arbor N; Ménard S; Nourreddine AM
    J Environ Radioact; 2016 Nov; 164():268-279. PubMed ID: 27522331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of mapped geology as a predictor of radon potential in Norway.
    Watson RJ; Smethurst MA; Ganerød GV; Finne I; Rudjord AL
    J Environ Radioact; 2017 Jan; 166(Pt 2):341-354. PubMed ID: 27297055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Bogard J
    Health Phys; 2015 May; 108(5):557. PubMed ID: 25811154
    [No Abstract]   [Full Text] [Related]  

  • 12. A method for determining Am-241 activity for large area contamination.
    Wilhelm E; Arbor N; Gutierrez S; Ménard S; Nourreddine AM
    Appl Radiat Isot; 2017 Jan; 119():86-93. PubMed ID: 27866124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to Comment on GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Alrefae T
    Health Phys; 2015 May; 108(5):557. PubMed ID: 25811155
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.
    Cresswell AJ; Sanderson DC
    Sci Total Environ; 2012 Oct; 437():285-96. PubMed ID: 22947616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping.
    Smethurst MA; Strand T; Sundal AV; Rudjord AL
    Sci Total Environ; 2008 Dec; 407(1):379-93. PubMed ID: 18962827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground gamma-ray survey of the Solforata gas discharge area, Alban Hills-Italy: a comparison between field and laboratory measurements.
    Di Paolo F; Plastino W; Povinec PP; Bella F; Budano A; De Vincenzi M; Laubenstein M; Ruggieri F
    J Environ Radioact; 2013 Jan; 115():175-82. PubMed ID: 22982169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.
    Beamish D
    J Environ Radioact; 2014 Dec; 138():249-63. PubMed ID: 25264940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE USE OF DECONVOLUTION TECHNIQUE FOR THE ANALYSIS OF GAMMA SPECTROMETRY DATA FROM FIELD MONITORING USING UNMANNED AERIAL VEHICLES.
    Klusoň J; Thinová L
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):284-287. PubMed ID: 31808931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Alrefae T
    Health Phys; 2014 Nov; 107(5):435-41. PubMed ID: 25271933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of lightweight gamma spectrometry systems in urban environments.
    Cresswell AJ; Sanderson DC; Harrold M; Kirley B; Mitchell C; Weir A
    J Environ Radioact; 2013 Oct; 124():22-8. PubMed ID: 23639691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.